
Journal o f  Statistical Physics. Vol. 86, Nos. 3/4, 1997 

A Classification of Quantum Hall Fluids 

Jiirg Friihl ich,  ~ U r b a n  M.  Stnder,  2" 3 and E m m a n u e l  Thiran l 

Received March 28, 1995 

In this paper, the key ideas of characterizing universality classes of dissipation- 
free (incompressible) quantum Hall fluids by mathematical objects called 
quantum Hall lattices are reviewed. Many general theorems about the classifica- 
tion of quantum Hall lattices are stated and their physical implications are dis- 
cussed. Physically relevant subclasses of quantum Hall lattices are defined and 
completely classified. The results are carefully compared with experimental data 
and also with other theoretical schemes (the hierarchy schemes). Several 
proposals for new experiments are made which could help to settle interesting 
issues in the theory of the (fractional) quantum Hall effect and thus would lead 
to a deeper understanding of this remarkable effect. 
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1. I N T R O D U C T I O N :  E X P E R I M E N T A L  FACTS A N D  
THEORETICAL IDEAS 

In this paper we describe a classification of (universality classes of) dissipa- 
tion-free (incompressible) quantum Hall fluids in terms of arithmetic 
invariants connected to integral lattices. The key insight will be that the 
theory of certain classes of integral lattices organizes experimental data in 
an efficient and accurate way. We emphasize that the appearance of 
integral lattices in the theory of the quantum Hall (QH) effect is not the 
consequence 6f queer mathematical fantasizing devoid of physical insight, 
but is the consequence of some fundamental physical principles and 
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properties, such as the absence of dissipation in an incompressible QH 
fluid, electromagnetic gauge invariance, parity and time-reversal breaking 
of the quantum mechanics of charged particles in an external magnetic 
field, and the Fermi statistics of electrons. It is our aim to show that 
integral lattices are fundamental to the theory of the QH effect. It will 
therefore be impossible to spare the reader a certain amount of mathe- 
matical reasoning involving lattice theory. 

The integer QH effect was discovered by yon Klitzing and collabo- 
rators 15 years ago, the fractional effect by Tsui and collaborators in 1982; 
see ref. 1. Since then this remarkable effect of non-relativistic many-body 
physics has posed numerous and diverse challenges to experimentalists and 
theoreticians. As theorists, we should sadly confess that we have antici- 
pated few of the real surprises. 

Experimentally, the QH effect is observed in two-dimensional systems 
of electrons and/or holes confined to a planar region /2 and under the 
influence of a strong, uniform magnetic field B,. transversal to /2. Such 
systems can be realized as inversion layers forming at the interface between 
an insulator and a semiconductor when an electric field (gate voltage) 
perpendicular to the interface is applied. Imagine that the sample is 
rectangular, with ~2 contained in the (x, y)-plane. By tuning the total 
electric current I = (I,., I,,) to some value and measuring the voltage drops 
V,- and V,~ in the x and y directions of the plane of the system, we can 
determine the resistances R,-.,., R.,.,, and RH from the equations 

V.,. = R,..,.I.,. - R,I, .  

V , ,  = RHI.,. + R.,:,.I~. 
(1.1) 

One finds that at temperatures T very close to 0 K R H is independent 
of I; it only depends on a dimensionless quantity v called the fi'lling factor 
and defined by 

17 

v eB~/hc (1.2) 

where n is the difference between the density of electrons and the density 
of holes in the sample, B{ is the component of the external magnetic field 
B,. perpendicular to the plane of the sample, and hc/e is the quantum of 
magnetic flux. Treating electrons and holes as classical point particles, one 
finds by equating electrostatic and Lorentz force that in a stationary state 

1 e 2 

- v  (1.3) 
RH h 
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The constant of proportionality e2/h is a universal constant of nature. 
Since, experimentally, 1l can be varied (by varying the gate voltage) and B,. + 
can be varied, the classical prediction (1.3) can be tested. Experiments at 
very low temperatures with rather pure samples yield surprising data: The 
experimental curve for R~ ~ as a function of v shows plateaus, i.e., small 
intervals of values of v where R ~ ~ is constant. Whenever (v, R ~ ~ ) belongs 
to a plateau, then: 

(i) R,.,. and R.,:,, very nearly vanish. 

(ii) R~ t is a rational multiple of e'-/h. The plateaus where 
R~ ~ = nHe'-/h for some integer nH= 1, 2, 3,... (not too large) occur with an 
astounding precision of one part in 10 8. The plateau-height quantization is 
insensitive to sample preparation (e.g., to impurities) and geometry, for all 
practical purposes. 

(iii) Only a limited (experimentally, a finite) set of rational numbers 
appear as plateauheights of RHIh/e 2. The behavior of R~ t as a function of 
v between neighbouring plateaus appears to exhibit universal features. In 
such transition regions Rx.,. and R,.,. are non-zero. 

These (and other) experimental findings pose fascinating problems to 
the theorist: 

1. Applying nonrelativistic many-body theory to a two-dimensional 
system of interacting electrons in an external magnetic field, can one 
predict the values of v at which Rx.,. and R.,.,, vanish? 

2. If R,-.,- and R.~..,. vanish, can one predict the possible values of RH? 
Writing 

e2 nH (1.4) 
R~ '  = a H ~  with a.=d--- ~ 

where nH and dH are two integers without common divisor, we would like 
to understand which set of rational numbers nH/dH corresponds to 
plateauheights of the dimensionless Hall conductivity (or Hall fraction) aH 
in real samples. Do only special types of integers appear as numerators n H 
or denominators d H of aH ("odd-denominator rule")? Conversely, can we 
predict which rational numbers will "never" appear as plateauheights of 
aH? How does the set of observed plateauheights depend on properties of 
the sample, e.g., on the number of interacting layers, the width of the quan- 
tum well corresponding to a layer, the in-plane component BI! of the 
applied magnetic field, etc.? Given an observed plateauheight of all, can we 
say something about the stability of the corresponding state of the system? 
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3. What is the structure of the quantummechanical state of the 
system when (v, all) lies in between two plateaus: e.g., when v =  1/4 or 
v = 1/2, in a single-layer sample? Experimentally, the transitions between 
plateaus do not appear to exhibit any hysteresis phenomena. Does this 
mean that these transitions are continuous and pass through a critical 
point where one should observe critical phenomena? If this is the case what 
kind of theories describe the critical points? Can we predict the (relative) 
widths of plateaus and of transition regions? 

During the past 5 years we have been involved in theoretical work on 
many of these questions. While we feel that theorists have gained a lot of fairly 
convincing heuristic insight in the direction of answering these questions, it 
is only the questions described under point 2 above to which we have what 
we would like to think are fairly definitive and mathematically precise 
answers. The description and mathematical derivation of some of these 
answers form the main contents of this paper. (We hope to present some of 
our insights into questions posed in points 1 and 3 in future communications.) 

The ground work for our approach to the problems described under 
point 2 has been carried out in refs. 2-7. It owes much inspiration to work 
of Halperin ~s~ and Read 191 and overlaps with work by Wen and others ~l~ 
(see also ref. 1, 11, and 12). 

Next we recapitulate the key theoretical facts underlying our analysis. 
In this work we use units where the electron charge - e  and Planck's con- 
stant h equal unity. A two-dimensional system of electrons and/or holes in 
a transversal, external magnetic field exhibiting the Hall effect (RH # 0) is 
called a QH system. If R,..~ and R.,.,, vanish, it is called an incompressible QH 
fluid or, for short, a QHfluld. 

Our purpose in this paper is to explain or predict universal properties 
of QH fluids at temperatures T ~  0 K. It is therefore reasonable to look for 
a description of such systems in the scaling limit. Thus we consider a 
family, parametrized by a scale parameter 0 with 1 ~ 0 < az, of ever-larger 
samples confined to regions /2 I~ : = { x l x / 0 = : ~ 2 }  in the (x, y) plane. 
We describe the system in ~2 "J~ in terms of rescaled space and time coor- 
dinates (t, ~), where ~ =x/0 ,  x ~r ~~ t = t/O, and t a R denotes time. The 
property that R,-.,- and R,,.,, vanish in QH fluids can be interpreted as 
indicating that the ground-state energy of such a quantum fluid confined to 
the region ~2 r176 is separated from the rest of its spectrum of energies of 
(extended) states by a mobility gap A c~ with 

A~~ > 0  (1.5) 

for all 0. From assumption (1.5) it follows that the universal physics of QH 
fluids in the scaling limit 0--+ ~ is described by a topological field theory. 
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For the purpose of predicting the values of an  or of other electric transport 
properties, it is sufficient to determine the Green functions of conserved 
current densities, in particular of the electric current density, in the scaling 
limit. Thus, let j ,  ..... j u  be a list of all current densities of a QH fluid which, 
in the scaling limit, are independently conserved. We write 

jk(r ' ~) = (jo(~, ~), jk(r, ~)) (1.6) 

where jo  is the charge density and Jk the vector current density associated 
with Jk, k = 1,..., N. Saying that Jk is conserved means that it satisfies the 
continuity equation 

1 0  o 
c ~ J k + V ' j k = 0  (1.7) 

The total electric current density Je, must always be among the con- 
served current densities of a QH fluid. Thus there are real numbers 
Q, ..... QN such that 

N 

Jet = ~, QkJk (1.8) 
k = l  

Let ( . . . ) 1 o l  denote the quantummechanical expectation in the 
ground state of a QH fluid confined to t2 t~ Let ~ : = ( ~ o , ~ , , ~ 2 ) =  
(cr, ~), ~ e/2, and a~, := 0/0~ ~'. We define the "vacuum polarization tensor" 
H in the scaling limit by 

H~)' (~, q) := lim 04< T[j~(O~) j'i(0r/)] )(o, 
O ~ a r 2  

(1.9) 

for/z, v = 0 ,  1, 2, and k, l =  I ..... N. In (1.9) we are using that a conserved 
current density of a two-dimensional system scales like the square of an 
inverse length (conserved current densities cannot have anomalous scaling 
dimensions). It follows from the continuity equations (1.7) that 

O,,H~)'=O,.H~}'=O for all k , l = l  ..... N (1.10) 

From (1.10) and the fact that the current densities Jk have scaling dimen- 
sion 2 it follows that for ~ and 11 in the interior o f /2  

H~.~'(~, q) = iskle ''''p 0,,~3~(~--I1) ( + "'" ) (1.11) 

where the coefficients Skt are the matrix elements of a symmetric N x N 
matrix S and are dimensionless (in our units, where h = - e  = 1 ). The terms 
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( + -.- ) omitted on the r.h.s, of (1.11) involve second or higher derivatives 
of ~-functions and have dimensionful coefficients (with dimensions of a first 
or higher power of length). They are of subleading order in the scaling 
limit. Let N+,  N_ ,  and No denote the number of positive, negative, and 
zero eigenvalues of S, respectively. By rescaling the current densities Jk and 
introducing suitable linear combinations thereof, we can always achieve 
that 

SkI=s~. ~kl (1.12) 

w i t h s k = l  for l < ~ k < ~ N + , s k = - I  f o r N + + l ~ k < < . N + + N  ,andsk=O 
otherwise. We may henceforth assume that the current densities Jk have 
been chosen in such a way that (1.12) holds. In discussing electric transport 
properties in the scaling limit and predicting the possible values of all, 
current densities Jk corresponding to Sk = 0 are irrelevant, and we may 
therefore assume that No = 0, N =  N+ + N_ .  

Note that for S 4:0 the tensor H violates parity and time-reversal 
invariance. Thus, the ground state of a QH fluid is not invariant under 
parity and timereversal unless N + - - N _  =0.  This is to be expected of a 
system of charged particles in an external magnetic field. 

It follows from ( I. I I ) and (1.8) that 

H~,"(~, r/) := lim 0 4 ( T [ j ~ , ( O ~ )  j; ,(0q)] ) '~  
0~o'_ 

= i( Q, Q) e""O~, 6c31(~ - t/) (1.13) 

where Q with components Q~,..., QN, introduced in (1.8), is called "'charge 
vector," and 

N N 

(Q,  Q)  = ~ QkSk'Q~ = Z skQ~ (1.14) 
k , l = l  k = l  

where the second equality holds if the "normalization conditions" (1.12) 
are imposed. 

From the basic equations of the electrodynamics of QH fluids 12' 51 we 
know that the coefficient (Q,  Q)  on the r.h.s, of (1.13) is nothing but the 
dimensionless Hall conductivity all, i,e., 

a , = ( Q ,  Q)  (1.15) 

Since the theory describing a QH fluid in the scaling limit is a 
topologicalfieM theory (A, > 0!), as remarked above, all excitations above 
the ground state of a QH fluid of finite energy and localized in compact 
regions contained in the bulk of the system ("quasi-particles') can be 
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described, in the scaling limit, as pointlike, static sources of the topological 
field theory (located at points in the interior of g2). One can show (2" 13)that 
one can assign N charges, J q .... , qU to every such source. The charge qk is 
an eigenvalue of the conserved total charge operator corresponding to the 
conserved current density Jk; this charge operator is normalized in such a 
way that the ground state of the system has charge zero. By (1.8), the total 
electric charge of a source described by a vector q of charges q~ ..... q,V, is 
given by 

N 

qc,(q)= ~ Qkq k (1.16) 
k = l  

If a source with a vector q~ of charges is transported (adiabatically) 
around a source with a vector q2 of charges along a counterclockwise 
oriented loop not enclosing other sources, a corresponding quantum 
mechanical state vector is multiplied by an "Aharonov-Bohm phase factor" 

where 

exp(2ni(q,, (12)) (1.17) 

N 

( q , , q 2 > - -  ~ q](S ])k,q~ (1.18) 
k , / = l  

If two identical sources labeled by vectors q ~, q_, of charges with q ~ = q2 = q 
are (adiabatically) exchanged along counterclockwise oriented paths not 
enclosing other sources then a corresponding quantum mechanical state 
vector is multiplied by the phase factor 

exp(ni(q,  q)  ) (1.19) 

These are properties of physical state vectors of the topological field theory, 
an abelian Chern-Simons theory of N gauge fields, that reproduces the 
current Green functions given in (1.11). They have been derived and dis- 
cussed in great detail in previous papers. (-,. 3.5.6) 

The conventional connection between electric charge and quantum 
statistics in a quantum mechanical gas of nonrelativistic electrons says that 
whenever the total electric charge q~t(q) of a localized excitation labeled by 
a vector q of.charges is an even (odd) integer (in units where e = - 1), i.e., 
the excitation is composed of an even (odd) number of electrons and/or 
holes, then the excitation obeys Bose-Einstein (Fermi-Dirac) statistics. This 
charge-statistics connection together with (1.19) implies that every vector q 
corresponding to an integer electric charge q~t(q) satisfies the constraint 

q~l(q) = (q, q )  mod 2 (1.20) 

822,86 34-24 
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Moreover, it follows from the charge-statistics connection and (1.17) that 
if q~ and q2 both correspond to &teger electric charges qel(qt), qc~(q2)eZ, 
then (q~, q2) is an integer. Finally, the vectors q for which q~(q) is an 
integer form an additive group; addition corresponding to the composition 
of two excitations, and the operation q ~ - q  corresponds to "charge con- 
jugation" (electron-hole exchange). 

A detailed account of the arguments just sketched can be found in 
ref. 6. The key result that they imply is that the vectors q of charges 
belonging to the set 

F : =  {q e RN]q~(q)e Z, q~(q)--- (q, q)  mod 2} (1.21) 

form an &tegral lattice. In other words, F is an additive group (a "free 
Z-module') and for any pair q~, q2 of vectors in F, (q~, t12 ) is an integer. 
We define the lattice dual to F by 

F* := {nelt~'Vl(n, q)  e Z  for all qeF} (1.22) 

Since the charge vector Q introduced in (1.8) and (1.13) has the property 
that 

(Q,  q)  =q~,(q)eZforallqeF (1.23) 

it follows that Q e F*. This implies that (Q ,  Q)  is a rational number and 
hence, by (1.15), the Hall fraction a H =  n . / d .  = (Q,  Q )  is rational. 

An electron and a hole are among the localizable, physical excitations 
of a QH fluid. Thus there must exist some vector q e F with the property 
that 

G,(R) = ( Q, q )  = 1 (1.24) 

Then (1.20) implies that (q, q)  is an odd integer; hence F is what is called 
an odd integral lattice, and, by (1.24), Q is a so-called primitive (or visible) 
vector of F*. Moreover, by reading the charge-statistics connection (1.20) 
(which holds for all q s F)  as a constraint on Q, we say that Q is an odd 
vector of F*. 

It is a basic fact of nonrelativistic quantum theory that state vectors 
are single-valued in the positions of electrons and holes. Let n be a vector 
of charges of an arbitrary, localizable physical excitation of a QH fluid, and 
let q e F .  Then by (1.17) and since state vectors are single-valued in the 
positions of electrons and holes, (n, q)  must be an integer, and hence 

n ~ F *  (1.25) 
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Thus the vectors of charges of localizable physical excitations form a lattice 
/'phys contained in or equal to F*.  

The conclusion reached, so far, is that: In the scaling limit, an (incom- 
pressible) QH fluid with N conserved current densities j ,  ..... JN (we shall 
speak of N "channels"), N =  1, 2 ..... can be characterized by the data: (i) an 
N-dimensional, odd, integral lattice F; (ii) an odd, primitive vector Q ~ F*  
with <Q, Q ) = a l l ;  and (iii) a lattice "/-'phys with /'CZ / 'phy s CZ/'* 

A pair (F, Q) is called a quantum Hall lattice. If the integral quadratic 
form (or metric) < , > defined on F is either positive- or negative-definite, 
we say that (F, Q) is a chiral QH lattice (CQHL),  for reasons connected 
to the chirality of edge currents; see Section 2 and also refs. 5 and 6. It is 
a plausible idea about the physics of QH fluids that if < ,  > is not positive- 
or negative-definite, then F can be decomposed into an (orthogonal) direct 
sunl, 

F=F,.@Fj, (1.26) 

with the property that F,.(Fh) is an odd, integral sublattice of F on which 
< , > is positive- (negative-) definite. Decomposition (1.26) may not hold in 
general, but it will serve as a fairly safe "working hypothesis" throughout 
much of this paper. The physical basis of this working hypothesis (decom- 
position of QH fluids into electron- and hole-rich subfluids) will be 
discussed in Section 2 and Appendix E; see also ref. 6 [In Section 2 we 
summarize the basic physical assumptions of our approach and provide the 
mathematical notions connected to (chiral) Q H lattices.] 

Our aim in this paper is to present a partial classification of QH lat- 
tices. In view of our working hypothesis (1.26), our main effort will concern 
the classification of chiral QH lattices (but see Appendix E). We shall care- 
fully compare our results with experimental data on QH fluids, focusing 
our attention primarily on data for single-layer QH fluids with aH in the 
interval 0 <~H ~< 1. Our job involves a characterization of QH lattices 
(F, Q) in terms of numerical invariants; see Section 3. Among these 
invariants, the following ones play a key role: 

(i) The dimension N of F. 

(ii) The discriminant of F, i.e., the order of the Abelian group F*/F, 
where F*/F denotes the family of cosets of F*  mod F (as well as more 
sophisticated invariants involving F*/F, e.g., the genus of F). 

(iii) An invariant, denoted l ...... interpreted physically as the smallest 
relative angular momentum of a certain pair of two identical excitations of 
electric charge 1 (electrons)--lm~ is an odd integer (see Section 3). 
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(iv) And of course the dimensionless Hall conductivity (or Hall 
fraction), a H =  (Q,  Q) .  

For CQHLs the invariants l ..... and aH are related by 

1 ...... >~ 1/(7 H (1.27) 

which is a consequence of the Cauchy-Schwarz inequality; see Section 4. 
In our comparison between theory and experiment, we shall appeal to 

a heuristic (analytically plausible, but mathematically unproven) stability 
principle which says that a QH fluid described by a QH lattice (F, Q) is the 
more stable, the smaller the value of the invariant l ...... and, given the value 
of l ....... the smaller the dimension N (and the discriminant) of F; see Sec- 
tions 4, 6, and 7. A measure for the stability of a QH fluid is, for example, 
the width of the plateau of o- H (as a function of v) corresponding to that 
QH fluid. 

In view of (1.27) it is useful to decompose the interval (0, 1 ] of values 
of aH into subintervals ("windows") Z~, =S,~ +, w S p ,  where 

E 1) [, ,) Z ' 2 : =  2p+l l  ,~p . . . . .  _ r / : =  2-p 2p-  1 p = l , 2 ,  (1.28) 

The invariant l ...... of a CQHL (F, Q) with aH ~_r, is bounded below by 
2 p +  1. We define "YfT- to be the class of all CQHLs, (/', Q), with aH e X ~  
and l ..... = 2p + 1 (and which are, to be technically precise, "primitive," as 
specified in Section 2). We shall see that for all p, all CQHLs in Jfj,~ can 
be enumerated explicitly, and that for p ~ 3 and sufficiently small values of 
their dimension (stability principle!) they correspond to experimentally 
well verified plateaus of all. 

There are heuristic analytical and numerical arguments, as well as con- 
vincing phenomenological evidence, indicating that the most stable state of 
a QH system with v < 1/7 is one where the electrons form a Wigner lattice. 
But a Wigner lattice is incompatible with a positive mobility gap A, ,  i.e., 
with incompressibility. By (1.27), this implies that the invariant l ...... of a 
chiral QH lattice corresponding to an experimentally realizable QH fluid is 
bounded above by 

I . . . .  ~ 7 (1.29) 

There is reasonable, analytical evidence ~4~ that single-layer QH 
systems with filling factors v = l / 2 ,  1/4, and various other even- 
denominator fractions are described by gapless (possibly marginal) Fermi 
liquids. Thus, e.g., aH = 1/2 and (7 H = 1/4 should not correspond to plateaus 
of single-layer QH fluids. 
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The C QHL ( F =  Z, Q = 1 ) has invariants N = 1, [F*/FI = I, l .... = 1, 
and a H =  1. It describes the by far most stable QH fluid with a Hall con- 
ductivity a H s  (0, 1 ]. Thus the plateau at a H =  1 should have by far the 
broadest width among all plateaus at values of aH in the interval (0, 1 ]. QH 
fluids described by QH lattices of dimension N >  1, discriminant > 1, and 
with aH close tO 1 (e.g., 6/7 < a l l  < 1 )  are expected to be very unstable 
against transitions to the QH fluid at a,, = 1 described by (F, Q) = (7/, 1 ) 
and are therefore likely to be invisible experimentally. 

In Fig. I we display experimentally observed plateau values of a H in 
the interval 0 < a ~ < l  and indicate the quality of their experimental 
verification. [ F o r  general experimental reviews of the (fractional) QH 
effect, see, e.g., refs. 15 and 16 and references therein. Recent data on QH 
fluids with Hall fractions belonging to the "two main series" a l l =  
N/(2N__ 1), N = 1 ..... 9, can be found in refs. 17 and 18. For the status of 
a QH fluid with a H =  10/17, see ref. 19. The signals observed at all =4/11 
and aN=4/13  appear to be very weak. c2m Magnetic field and density- 
driven phase transitions have been reported at a H =2/3.  c2~ -'~ A magnetic 
field-driven phase transition at a~ =3/5  has been established ~23~ and a 
possible phase transition at a~ = 5/7 has been discussedJ ~6~] In Fig. 1 we 
write aH =nH/dH and display the data in a "dH versus aH plot." We sub- 
divide the interval (0, 1] into the windows Z'~, + introduced above for 
p = l , 2 ,  and 3. 

It may happen that there are several QH lattices with the same Hall 
fraction all. At such values of aH we predict phase transitions between 
"slructurally different" QHfluids, as, e.g., the in-plane component BI! of the 
external magnetic field (and thus the magnitude of Zeeman energies 
associated with the magnetic moment of electrons), or the density of 
electrons (at fixed filling factor), or the width of the layer to which the 
electrons (or holes) are confined are varied. A theory of such phase transi- 
tions is developed in Section 7 and the results are summarized in Appen- 
dix D. The most likely Hall fractions aH at which they may occur are 2/3, 
3/5, 4/7, 5/7, 5/9, and I/2! 

We shall find (see Section 5 and Appendix B) a nice, simple CQHL 
(F, Q) with N = 3 ,  I ...... = 3  and crH= 1/2. However, in s#Tgle-layer QH 
systems, there is no plateau at a H =  1/2, and we just said that there is 
analytical evidence for the idea that the ground state of a QH system at 
v = 1/2 is a gapless Fermi liquid. So is there a problem with our theory? In 
order to understand what is going on at a H =  1/2 (and at various other 
values of aH e (0, 1 ]), it is useful to consider yet one further invariant of 
integral lattices, the so-called Witt sublattice. Given an integral lattice F, its 
Witt sublattice Fw is defined to be the sublattice generated by all vectors 
q e F  with (q, q ) =  1 or 2. It turns out that, for (#~decomposable) chiral 
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Fig. I. Observed Hall fractions o- u = nN/dN in the interval 0 < a,t ~< I and their experinaental 
status in single-layer quan tum Hall systems. (.) Well-established Hall fractions; these are frac- 
tions for which an R,..,- min imum and a plateau in R H have been clearly observed, and the 
quantization accuracy of a H = I/RN is typically better than 0.5%. (-.) Fractions for which a 
minimum in R,..,. and typically an inflection in R .  (i.e., a min imum in dRn/dB,~, but no well- 
developed plateau in R , )  have been observed. If there are only very weak experimental 
indications or controversial data for a given Hall fraction, the symbol t * )- Finally, B / n - p  
is appended to fractions at which a magnetic field (B I-and/or density (n)- driven phase transi- 
tion has been observed. 

QH lattices (F, Q), the Witt sublattice Fw of F is always the root &ttice of a 
semisimple Lie algebra ~; more precisely, F w is an orthogonal direct sum of 
A-, D-, and E6. 7-root lattices. (These notions are explained in Appendix A.) 
Furthermore, the Lie group ~# corresponding to the Lie algebra ~ whose 
root lattice is given by Fw is a symmetry group of the topological quantum 
theory describing the scaling limit of the QH fluid corresponding to (f', Q), 
in a sense that has been made precise in refs. 3, 5, and 6 and is briefly 
reviewed in Section 5. Standard physics often permits us to determine at 
least some of the symmetries of QH fluids (in the scaling limit). 
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For example, if the effective gyromagnetic factor of an electron in a 
QH fluid is small, so that Zeeman energies can be essentially neglected, 
then the scaling limit of a QH fluid in an only moderately large magnetic 
field is expected to exhibit an SU(2)spi, global symmetry (spin flip). 12< 5~ In 
this case the Witt sublattice Fw of the QH lattice describing the QH fluid 
must contain the root lattice v/2 Z of su(2). Furthermore, if we consider a 
double-layer QH fluid, which, in the scaling limit, exhibits an SU(2)t,y~r 
symmetry [coherent superposition of modes in the two layers with SU(2) 
symmetry] then Fw must contain an su(2)-root lattice. One can easily 
imagine that there are double-layer QH fluids exhibiting (in the scaling 
limit) both symmetries, a n  S U ( 2 ) s p i  n and an SU(2)~ay~r symmetry, Then F w 
must contain the direct sum of two su(2)-root lattices. It so happens that 
there is a three-dimensional CQHL (1, Q) with l .... =3,  F w = x / ~ Z O  
x/~ 7/ [direct sum of two su(2)-root lattices], and a H =  1/2. This matches 
the recent experimental observation of a plateau at a H =  1/2 in double- 
layer (or two-component) QH systemsJ 2s'26~ 

Incidentally, "layer" could also stand for "filled Landau level" and this 
remark suggests a theoretical explanation of the observed plateau at 
cr H = 5/2127,28~ 

There is also a two-dimensional CQHL (F, Q) with l .... = 3, Fw = ~ ,  
and a n = 1/2. It might describe an incompressible QH fluid consisting of 
two interacting layers of spin-polarized electrons with a 7/2 layer permuta- 
tion symmetry. Since 7/2 is a discrete symmetry, it does not contribute to 
Fw, but constrains the structure of (F, Q). 

The moral to be drawn from this discussion is that we are well advised 
to search for global symmetries (discrete and, especially, continuous ones) 
of the theory that describes the scaling limit of a QH fluid. The continuous 
symmetries appear as root lattices contained in the Witt sublattice of the 
QH lattice describing the fluid. 

It has been shown in ref. 6 that for CQHLs (F, Q) with aH < 2, 

(Q,  q)  = 0  for all q ~ F w  (1.30) 

i.e., Q is orthogonal to F w. Let Fo denote the sublattice of F consisting of 
all vectors in /" that are orthogonal to Q. Clearly, for a H < 2, F o contains 
F w and obviously dim Fo ~< dim F -  1. 

These rerfiarks suggest that an interesting class of QH lattices consists 
of those CQHLs (F, Q) for which 

F 0 = F  w and dim Fw = dim F -  1 (1.31) 

We call such lattices "maximally symmetric" CQHLs. Section 5 is devoted 
to a classification of all maximally symmetric CQHLs with 0 <aH ~< 1. 
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Recall that Ng~+, p = 1, 2 ..... has been defined to be the class of all 
(primitive) CQHLs with aH EZ'~ + [see (1.28)] and with l ...... = 2 p + l  
[which, by (1.27), is the minimal value the invariant l ..... can have, for 
<7 H ~ Xr]. Lattices in Jt~ are said to be L-minimal. We shall show that all 
lattices in ~ +  are maximally symmetric, their Witt sublattice is an A x ~- 
[or  su(N)-] root lattice, and their Hall fraction is a H = N / ( 2 p N + I ) ,  
N =  (1), 2, 3,...; see Section 4. This series of CQHLs is called the "basic" 
A- [or  su(N)-] series in the window E~,. We shall find a bijection ~, ,  called 
a shift map, mapping the basic A-series in the window Z'~ onto the basic 
A-series in the window Z' + i, +l, P = 1, 2 ..... In fact, the shift map @ is defined 
on .J4'?,7' + and is a bijection from Yf,+ to . ~q+~,.~ + On the sets Y#,7'" + the action 
of the map @ on the invariants aH and l ...... is given by 

1 1 
- -  --* - -  + 2 p  a n d  1 ...... --* 1 ...... + 2 p ,  p = 1, 2 .... ( 1 . 3 2 )  
0"1t (71-1 

If (F', Q') is the image of a CQHL (F, Q) under @, p = 1, 2 ..... then 
by (1.32), and invoking our stability principle, the QH fluid corresponding 
to (F' ,  Q') is less stable then the one corresponding to (F, Q). Hence the 
number of observed plateau values in a window Z~, decreases with p 
(reaching 0 when p > 3). 

The existence of the shift maps @ and the observation just described 
allow us to restrict our classification of L-minimal CQHLs to the class 
.~  = .:# ~- w d'# ~. This is not true if we want to classify all QH lattices, not 
just chiral ones. However, among QH lattices that are not chiral, the "non- 
euclidean hierarchy lattices" are well understood (see Appendix E) and 
they are perhaps the only physically important nonchiral QH lattices. All 
CQHLs in ~ + are classified and are maximally symmetric, as remarked 
above and proven in Section 5. They form the basic A-series in X~-. The 
classification of lattices in d# i is much more difficult and remains incom- 
plete. But besides the maximally symmetric ones (Section 5), we have also 
classified all CQHLs in . /# j  of dimension N~<4. Our results can be found 
in Section 6. (With more investment in programming and computer time, 
our results could be extended to N- -5 ,  6.) 

In Fig. 2, results of our theoretical work concerning QH lattices with 
odd-denominator Hall fraction are superposed on the experimental data 
(displayed in Fig. 1) in the window s =Z~- wZ't-.  This figure shows a 
pretty remarkable agreement between theory and experiment. All experi- 
mentally observed Hall fractions aH in the window Z'~, with the only 
exception of the "very weak" fraction aH =4/11, can be realized by an 
L-minimal C QHL or a QH lattice which is "charge-conjugated" to an 
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L-minimal one. Note that the corresponding lattices are all of relatively low 
dimension, namely N~< 9. In Section 6 we shall see that, interestingly, the 
"simplest" non-L-minimal CQHL is found at aH =4/11. (It coincides with 
the proposals of the hierarchy schemes at that fraction.) Figure 2 also 
shows where experimentalists might wish to look for signals of new QH 
fluids, or for new phase transitions between structurally different QH fluids 
with the same value of all. 

Meditating on Fig. 2, it may look disturbing that one seems to have 
observed a phase transition at a H =  2/5 as the in-plane component BI I. of 
the external magnetic field is varied. There is a unique L-minimal CQHL 
with ~H = 2/5. It is two-dimensional, with Fw = x / ~ Z  [the root lattice of 
su(2)]. So a QH fluid with aH =2/5 exhibits a global SU(2) symmetry (in 
the scaling limit). For "small" values of the external magnetic field B,. this 
symmetry is SU(2)~v~,I, i.e., electron spins may be flipped. But when B,. is 
large essentially all electron spins are oriented in the direction antiparallel 
to B, and the SU(2) symmetry is an #Tternal symmetry compatible with the 
hierarchy pictures of refs. 29 and 30. A rather similar story can be told 
about the plateau at aH = 2/3, (besides the possibilities of interesting phase 
transitions between structurally different QH fluids). All this and more is 
discussed in Section 7. 

Two concluding remarks may be clarifying: 

(i) The term "incompressible QH fluid" can be understood literally 
in that shape fluctuations of a droplet of an (incompressible) QH fluid with 
fi-ee boundaries are area-preserv#Tg. The Lie algebra of area-preserving 
maps has a central extension which is connected to the W~ + ~. algebra. This 
algebra is related to the Abelian Chern-Simons theory that describes the 
scaling limit of an (incompressible) QH fluid in a natural way first dis- 
cussed by Sakita. ~3-'~ Its study in connection with the QH effect has become 
a "hot topic" (see, e.g., ref. 33), but does not appear to lead to results that 
go beyond those in refs. 5 and 6, and in this paper. 

(ii) The shift m a p , ~ : a ~  ~ ~ a t . l l + 2  and the map T : a  H ~ a H + I ,  
corresponding to the addition of a full Landau level, generate a subgroup 
Fr(2) of the modular group PSL(2,  77). For fun, one can study the action 
of Fr(2)  on the plateau values of all. More daringly, one can study the 
action of F7-~2) on the complex plane of resisitivites p := p.,.,. + ia H ~ (where 
p,,. := R,..,.!,./l,., with/, ,  and l,. the length and width, respectively, of a rec- 
tangular QH system). This has been advocated in ref. 34 as a means to 
understand a "global phase diagram" for the QH effect. However, the 
reader who will make it through Section 4 will see that these are rather 
misleading speculations which, in the absence of real understanding of the 
physics of QH systems, should not be taken too seriously. 



836 Fr6hlich e t  al.  

d H = Z  

3 

5 

7 

9 

i i  

13 

15 

17 

19 

| 

(~) (B-p) 
2 

| 
3 

4 

| 
4 5 

| 
5 4 

3 

6 

7 

' f ; i  ( ($5 X 

8 I 
I 

I . . . . .  x @,L.! 
9 I 

3,4 

"~ B/n-p 
4,5,... 

3,4 4 

5,6,7 6,7,... 
4 3,4 

| cB-,) 
5,6 9,10 

�9 
7 

4 
| | 

7 11 

| | �9 
9 9,11 6 

�9 
11 

4 

Q (x) 0 m 
6 23 9 

4 

x 0 x [ ]  (x) 
(5 15 

4 

�9 
6 ,7 . . .  

0 
8,10,11 

4 
(x) [] 
IT 

4 

[] �9 
"/,8 

(x) (~ 
25 8 

(x) 0 (x) 
20 7 18 

(x) (x) (x) 
19 33 20 

| 
1 

i 
2 O'H 

Fermi liquid domain of 
behaviour attraction 

of<m= 1 

Fig. 2. Compilation of L-minimal (/ ..... =3} chiral quantum Hall lattices (CQHLs) with 
odd-denominator Hall fractions aH in the interval 1/3 < cT H ~< I. The experimental status of the 
Hall fractions displayed here is indicated, tbr single-layer systems by ~ o, and �9 as in Fig. 1. 
Superposed oll the interval 1/3 ~< o-H ~< 1 of Fig. 2 is a list of different L-minimal CQH Ls: �9 
maximally symmetric, L-minimal CQHLs of dimension N~<II (where the corresponding 
dimensions are given below the symbols); I-q, generic, indecomposable. L-minimal CQHLs of 
low dimension, N~<4 (the respective dimensions are given above the symbols). ( x ), fractions 
lbr which there are no low-dimensional (N ~< 4), L-minimal CQHLs, but there are maximally 
symmetric ones in "'high" dimensions (with the lowest such dimension indicated below the 
symbols), x ,  fractions for which there are neither low-dimensional, L-minimal CQHLs, nor 
maximally symmetric ones in "higher" dimensions. Dashed boxes stand for nonchiral QH lat- 
tices that are "charge-conjugated" to the maximally symmetric, L-minimal CQHLs in -Y'~-. 
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As to the contents of this paper, we have already indicated the 
contents of Sections 5-7. In Section 2 we recall the basic (physical and 
mathematical) notions underlying our analysis. In Section 3, we introduce 
and discuss basic invariants for CQHLs and explain their physical inter- 
pretation. In Section 4 we present general results on the classification of 
CQHLs. Sections 5 and 6 concern the complete classification of special sub- 
classes of CQHLs. In Section 7 we apply our results to understand some 
of the physics of the fractional QH effect. In Appendix A we review some 
group theory that is important in our analysis. Appendix B summarizes all 
our results on maximally symmetric CQHLs with aH ~ (0, 1 ], Appendix C 
those on low-dimensional (N~<4) CQHLs. In Appendix D we summarize 
the results of the theory of embeddings (expounded in Section 7) of 
L-minimal CQHLs into bigger ones, preserving the value of the Hall 
fraction cr H. This will clarify the classification of the "difficult" classes JgT" 
Finally, in Appendix E we present the QH lattices that reproduce the 
Haldane-Halperin c29~ and Jain-Goldman t3~ hierarchy fluids. 

2. U N I V E R S A L I T Y  C L A S S E S  OF QH F L U I D S  A N D  
QH LATTICES:  BASIC  N O T I O N S  

In this section, we recall the basic physical principles and assumptions 
leading to our characterization of (universality classes of) QH fluids by QH 
lattices. We introduce the fundamental mathematical notion of a chiral QH 
lattice (CQHL). As mentioned in Section 1, CQHLs are the "basic building 
blocks" of QH lattices. Basic notions related to CQHLs are summarized. In 
order to exemplify our language we describe the (chiral) QH lattices 
corresponding to the integer QH fluids of the noninteracting electron 
approximation and the celebrated Laughlin fluids. 135~ 

Since the early theoretical work by Laughlin 435~ on the QH effect the 
electromagnetic gauge symmetry of quantum mechanics has been 
instrumental in analyzing this effect. This gauge symmetry also provides the 
cornerstone of our approach. ~2-6~ We remark that a general framework for 
a systematic discussion of phenomena related to electron spin in QH fluids 
has been developed in refs. 4 and 5. It is based on the presence of a non- 
Abelian SU(2).,pi,-gauge symmetry in nonrelativistic quantum many-body 
systems. Although we will not review that general framework here, we 
emphasize that our results presented in this paper are fully consistent with 
that general picture, and, as a matter of fact, the present classification 
results provide a basis for a systematic discussion of spin effects in QH 
fluids. For further discussion of this point, see the remarks about phase 
transitions in Section 7 and refs. 5 and 6. Besides gauge invariance, our 
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approach requires the following basic physical assumptions characterizing 
QH fluids (see also Section 1): 

(A1) The temperature T of the system is close to 0 K. For  an 
(incompressible) QH fluid at T = 0 K, the total electric charge is a good 
quantum number to label physical states of the system describing excita- 
tions above the ground stateJ c' TM The charge of the ground state of the 
system is normalized to be zero. 

(A2) In the regime of very short wave vectors and low frequencies, 
the scaling limit, the total electric current density is the sum of N = I, 2, 3 .... 
separateO~ conserved u(1)-current densities describing electron and/or hole 
transport in N separate "channels" distinguished by conserved quantum 
numbers. In our analysis, we regard N as a free parameter. Physically, N 
turns out to depend on the filling factor v and other parameters charac- 
terizing the system. 

(A3) In our units where h = - e  = 1 the electric charge of an elec- 
tron/hole is + 1 / - 1 .  Any local excitation (quasiparticle) above the ground 
state of the system with integer total electric charge q~ satisfies Fermi-Dfl'ac 
statistics if q~ is odd and Bose-Einste#7 statistics if q~ is even. 

(A4) The quantum-mechanical state vector describing an arbitrao~ 
physical state of an (incompressible) QH fluid is s#~gle-valued in the 
position coordinates of all those (local) excitations that are composed of 
electrons and/or holes. 

In addition to these four basic assumptions, we put forward, as in refs. 
4-7 a "working hypothesis" expressing a "chiral factorization" property of 
QH fluids. 

(A5) The fundamental charge carriers of a QH fluid are electrons 
and/or holes. We assume that in the scaling limit the dynamics of electron- 
rich subfluids of a QH fluid is hTdependent of the dynamics of hole-rich 
subfluids, and, up to charge conjugation, the theoretical analysis of an 
electron-rich subfluid is identical to that of a hole-rich subfluid. 

We make a few remarks on these assumptions. For  a finite, but macro- 
scopic system, assumption (A2) implies that there are N distinct, approxi- 
mately conserved chiral edge currents circulating along the boundary of the 
system.--Strict conservation of these u(1)-current densities holds in the 
scaling limit.--This generalizes to the fractional QH effect Halperin's edge 
current picture ~'~ of the integer QH effect. ~2'5"~L~2~ Assumption (A5) 
implies that for an electron-rich QH fluid, say, the chirality of all edge 
currents is the same. It is fixed by the direction of the external magnetic 
field. The mathematical virtue of the edge current picture is that it allows 
for a natural introduction of the tools of current algebra into the theory of 
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the QH effect; see refs. 10, 2 and 5 and references therein. A systematic 
mathematical implementation of assumptions (AI)-(A5) in the edge 
current picture of the QH effect is given in refs. 5 and 6. 

Given the close relationship between two-dimensional chiral con- 
formal field theory and quantum Chern-Simons theory, as expounded first 
by Witten, (36~ one can establish a boundary-bulk duality in QH fluids. By 
this duality, quasi-particles excited at the edge of a QH fluid have their 
precise counterparts in local bulk sources in a quantum Chern-Simons 
theory that is expressed in terms of the "vector potentials" of N separately 
conserved u(1 )-current densities of the system. Details of this bulk picture 
and in particular the explicit implementation of assumptions (A1)-(A5) in 
this picture are given in refs. 6 and 7. Further considerations elucidating 
the boundary-bulk duality in QH fluids can be found in refs. 5 and 37. 

As recapitulated in Section 1, it follows from assumptions (A1)-(A4) 
that the properties of a QH fluid in the scaling limit can be described com- 
pletely in terms of a mathematical object that we have called a quantum 
Hall lattice. A QH lattice (_F, Q) consists of an odd, integral lattice F and 
an integer-valued linear functional Q o n / ' ;  see Section 1 and the defini- 
tions below. The number of positive eigenvalues of the metric on F 
corresponds physically to the number of edge currents of one chirality, the 
number of negative eigenvalues to the number of edge currents of the 
opposite chirality. In the situation envisaged in the working hypothesis 
(A5), F is an orthogonal direct sum of a lattice /",, on which the metric is 
positive-definite and a lattice/ 'h on which it is negative-definite; see (1.26). 
The structure o f / "  can hence be understood if we are able to enumerate 
positive-definite lattices. In the most general situation, however,/" could be 
an indecomposable, indefinite lattice or contain an indecomposable, 
indefinite sublattice. In this case, there would exist local physical excita- 
tions of the system of edge currents with the quantum numbers of the elec- 
tron (electric charge 1 and Fermi-Dirac statistics) that are composed of 
left- and right-moving excitations which themselves, however, are not 
physical quasiparticles of the system. In other words, the left- and right- 
moving channels of edge currents are coupled to each other in such a way 
that physical states on the algebra of edge currents cannot be factorized 
into a product of a physical state on the algebra of left-moving edge 
currents and a physical state on the algebra of right-moving edge currents. 
We believe that those indecomposable, indefinite lattices do not correspond 
to stable QH fluids. 

While we have not found a priori reasons to rule out indecomposable, 
indefinite (sub)lattices/ ' ,  we shall not consider this situation in the present 
paper. Rather, it is our strategy to adopt the chirality assumption (A5) as 
a working hypothesis, and, investigating its strongly predictive consequences, 
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we intend to lay the ground for testing it in different experimental situations; 
for the predictions, see Fig. 2 in Section 1 and the discussion in Section 7. 

In this context we note that all the Haldane-Halperin ~29~ and Jain- 
Goldman ~3~ "hierarchy fluids" satisfy our assumptions (A1)-(A4) and 
most of them satisfy assumption (A5), too. The exceptions (corresponding 
to non-Euclidean, composite QH lattices) can be shown to satisfy a slightly 
weaker form of (A5). This slightly weaker form of (A5) is given in 
Appendix E, where details about "hierarchy QH lattices" can be found. 

The stronger assumption (A5) helps in reducing the classification 
problem of QH fluids to a tractable one! Furthermore, it leads, as we wish 
to show in this paper, to interesting results typically complementing and 
sometimes challenging the commonly accepted hierarchy schemes of the 
QH effect. 

Defining an (incompressible) QH fluid as a two-dimensional electronic 
system with vanishing resistances R,-.,- and R,:,. [see (1.1)] and satisfying 
assumptions (A1)-(A5), we advanced the following contention in refs. 5-7. 

Classif ication of QH Fluids. In the scaling limit, the quantum- 
mechanical description of an (incompressible) QH fluid is universal and 
completely coded into a pair of chiral quantum Hall lattices (CQHLs), one 
CQHL (F e, Q,,) for the electron-rich subfluids and one (Fh, Qh) for the 
hole-rich subfluids. 

In our units where e2/h = 1, the Hall conductivity of the entire QH 
fluid is given by 

t "  h o'. = ( Q~,, Q , , )  - ( Q, , ,  Q h )  = O'H --  0". (2.1) 

where (Q,,, Q,,) and (Qh, Qh) denote the squared lengths of the charge 
vectors Q,, and Qh which are integer-valued linear functionals on the 
Euclidean lattices Fe and Fh, respectively. We remark that, by assumption 
(A5), it suffices to focus our attention on the analysis of, say, the electron- 
rich subfluids of a QH fluid and the corresponding CQHL. In the fol- 
lowing, we drop the subscript e from our notation. 

D e f i n i t i o n .  A chiral quantum Hall lattice (CQHL) is a pair (F, Q), 
where F is an odd, integral, Euclidean lattice and Q is an odd, primitive 
vector in F*, the dual lattice of F. 

We clarify this definition by recalling some technical notions: 

1. Let V denote a real, N-dimensional vector space with inner 
product (or metric) ( , ). We choose an integral basis, {e I ..... eN} in V. 
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Integrality means that the (regular, symmetric) matrix of scalar products 
K =  (K0.), the so-called associated Gram matrix, is integral, i.e., 

K~t := (e; ,  ei)  ~ 7/ for all i , j = l  ..... N (2.2) 

Taking integral linear combinations of these basis vectors, we can form the 
integral lattice 

F : =  q e V l q =  ~ i qi qe~, ~ ,  for all i =  1 ..... N (2.3) 
i = l  

A lattice F is said to be Euclidean if the metric ( , )  is positive-definite (i.e., 
its Gram matrix K is a positive-definite matrix). 

Introducing the dual basis {et,..., e2} which is characterized by the 
property that (eJ, e ~ ) = 6 f  for all i, j =  1 ..... N [i.e., ~.J=~.~=l(K-I)iiei, 
j = 1 ..... N]  we have the dual lattice F* of the lattice F given by 

F*  := {n~ Vl(n ,  q)  ~7/for  a l l q ~ F }  

= n s n = Y', ni~ J, nj ~ 7/, for all j = 1 ..... N ___ F (2.4) 
j =  I 

2. We recall Kramer's rule, 

( K - ' F = I R  'j (2.5) 
,8 

where J~ denotes the cofactor (or adjoint) matrix of K and A : = d e t K  
denotes the discriminant of the lattice F. We note that A is the order of the 
Abelian group F*/F, or, from a geometrical point of view, it specifies the 
relative size of the lattice F when viewed as a sublattice of the dual 
lattice F*.  

3. An integral lattice F is said to be odd if it contains a vector q for 
which (q,  q)  is an odd integer. Thus F is odd if and only ifKi; is odd for 
at least one i in 1 ..... N (otherwise F is said to be even). 

4. A veqtor Q =Z. iNIQj~ . i~F  * is called primitive (or visible) if the 
greatest common divisor (gcd) of its dual components Qj equals unity, i.e., 

gcd(Ot ..... QN) = gcd( (Q,  e, ) ..... ( Q ,  eN)) = 1 (2.6) 

Geometrically, Q e F *  is primitive means that the line segment from the 
origin to Q does not contain any point of F *  other than 0 and Q. 
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5. The vector Q e F* is said to be odd if the following congruence 
holds 

(Q,  q)  = (q, q)  rood 2 for all q e F  (2.7) 

6. A lattice F is called decomposable (or composite) if it can be 
written as an orthogonal direct sum of sublattices, 

F = F , ( ~ F 2 q ~ . . . O F a .  for some k~>2 (2.8) 

i.e., for arbitrary vectors qi e F~ and qj e EJ we have (q;,  qj) = 0 for all i Cj. 
Otherwise F is said to be indecomposable. If (F, Q) is a composite CQHL 
with decomposition (2.8), then the dual lattice has the associated decom- 
position F* = F* @ F* • ... �9 F* and the corresponding decomposition 
of the charge vector reads Q = Q~ + Q2 + �9 + Qk- The decomposition (2.8) 
is reflected in the formula 

~ H = ( Q , Q ) = ( Q , , Q ~ _ ) + - . .  + ( Q k ,  Q k ) = a { ~ + . . - + ~ ,  (2.9) 

From a physical point of view, indecomposable CQHLs can be considered 
as describing "elementary" QH fluids, and for this reason we mainly focus 
on indecomposable lattices in the present work. We note that, as suggested 
by (2.1), we can think of QH fluids with electron- and hole-rich subfluids 
as being described by particular composite lattices, namely ones that are 
orthogonal direct sums of two CQHLs of opposite chirality (i.e., there are 
currents of both chiralities circulating at the edge of these fluids). 

7. We introduce two physically natural restrictions on chiral QH lat- 
tices. First, let (F, Q) be a decomposable CQHL with decomposition (2.8) 
and (2 9). Then (/', Q) is said to be proper if no component Q~, j =  1 ..... k, 
of the charge vector Q is vanishing. Note that if, say, Q j =  0, then a,[~ = 0 
in (2.9), and the subfluid corresponding to (Et, Qi) does not have any 
interesting electric properties [see also the remark after (1.12)]. For this 
reason we neglect improper CQHLs in the present work, and properness 
will always be understood to hold in the sequel. 

Second, from a physical point of view it is natural to even sharpen the 
notion of properness as follows: Let (F, Q) be a decomposable CQHL as 
above. Then (F, Q) is said to be primitive if every component Qi, 
j =  1 ..... k, of the charge vector Q is a primitive vector in F*;  see (2.6). 

Primitive CQHLs are proper, but the contrary is not necessarily true. 
We will show in Theorem 4.6 in Section 4 that, for a subclass of proper 
CQHLs, the contrary can be inferred. Moreover, note that indecomposable 
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CQHLs are proper and primitive. The classification of primitive CQHLs is 
the main objective of the present paper, and the corresponding results are 
given in Sections 4--6. 

We remark that, as explained in Appendix E, all chiral hierarchy fluids 
correspond to primitive CQHLs. In general, however, there are (nonchiral) 
hierarchy fluids which are associated with nonprimitive CQHLs. For some 
examples, see (b) in Appendix E. We do not find these nonprimitive 
proposals very attractive and shall provide, at some of the corresponding 
Hall fractions, primitive CQHLs in Sections 5 and 6. 

OH Latt ice-QH Fluid Dictionary.  We briefly summarize the 
basic relationship between the language of QH lattices and the description 
of physical properties of the corresponding QH fluids; see Section 1, and, 
for a detailed discussion, refs. 5-7. 

Let (F, Q) denote a CQHL. Then any vector q in the lattice F labels 
a multielectron or multihole excitation above the ground state of the corre- 
sponding QH fluid which is localized in some bounded region of the plane 
of the system. (Here "hole" means a "missing electron" in an electron-rich 
fluid.) Next, arbitrary localized physical excitations of the QH fluid 
(quasiparticles) are labeled by vectors n that form a lattice /'pt, ys which 
clearly has to conta in /"  and which itself is contained in or is equal t o / ' * :  

. / "~  Fphy s ~-~ ./"* (2.10) 

In our units where e = - 1  the total electric charge qCt(n) of a physical 
excitation labeled by n e/-'phys is given by the inner product of n with the 
charge vector Q, 

q~,(n) = ( Q, n) (2.11) 

and the statistical phase O(n) of the excitation is determined by the squared 
length (modulo 2) of n, 

`9(n) = (n, n)  rood 2 (2.12) 

We note that (2.12) corresponds to a normalization of the statistical phase 
such that bosons have 0 = 0 (mod 2) while fermions have ,9 - 1 (mod 2). As 
mentioned in Section 1, moving (adiabatically) one quasiparticle labeled by 
a vector n~ around another one labeled by a vector n 2 along a counter- 
clockwise oriented loop, the state vector describing the system changes by 
a phase factor exp(2rti(n~, n27); see (1.17). 

E x a m p l e s .  We conclude this section by describing the two most 
basic examples of QH fluids in the language of QH lattices introduced 
above: 

822/86,3-4-25 
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(a) QH fluids with aN =N,  N =  1, 2 .... in the non&teracting electron 
approximation. These integer QH fluids correspond to the (self-dual) unit 
Euclidean lattices in N dimensions: F =  I"phy s = / " ~ k  = 7~A t = 7 / ( ~  . . .  ~ 7~. 

Here N is the number of separately conserved edge currents ~8~ or filled 
Landau levels. Denoting by e; the generator of the ith summand, i = 1 ..... N, 
we have K u = ( e i ,  ei)=6gj.  By the primitivity condition on the charge 
vector Q (see point 7 above), we have Q = e l  + ... +eN and (Q,  Q ) =  
1 + .-- + 1 = N. Finally we note that, by the self-duality of 7/'v there are no 
fractionally charged excitations with fractional statistics ("anyons") in these 
fluids. 

(b) The Laughlin fluids 13sl a t  6rH=l/m, where m = 2 p + l ,  p = ( 0 ) ,  
1, 2,.... Here, F =  ~/~7/, which is the one-dimensional lattice generated by 
e with squared length (e, e)  =m.  The dual lattice is F* = (1/v]-m) 7/which 
is generated by ~ = e/re. The charge vector, being primitive in F*, takes the 
form Q = e, and thus a H =  (Q,  Q )  = 1/m. The quasiparticles are labeled by 
~ ( ~ I " p h y s = / - ' * , ~ _ ( ~ 7 / .  By (2.11), they have fractional electric charges 
q~l(() = (Q,  ~e) = ~_/m, and by the congruence (2.12), they have fractional 
statistical phases O(() = ( ~ ,  ~ )  =~2/m (mod 2). 

Note that, in this case, the knowledge of the electric charges q~t of the 
excitations uniquely determines their statistical phases 0. Such a charge- 
statistics relation is a property of many interesting higher dimensional QH 
lattices; see Theorem 4.5. However, such a relation does not hold for 
arbitrary QH lattices. 

3. BASIC I N V A R I A N T S  OF CHIRAL QH LATTICES (CQHLS)  
A N D  THEIR PHYSICAL INTERPRETATIONS 

Invariants of CQHLs, most of which appear to be new, provide physi- 
cally interesting information about the corresponding chiral (i.e., electron- 
or hole-rich) QH (sub)fluids. Most of the invariants summarized below 
have been introduced in ref. 6, where more details can be found. From the 
classification results presented in Sections 5 and 6 and from the discussion 
in Section 7, it follows that a microscopic understanding and a corre- 
sponding determination of the values of these invariants pose interesting 
open problems in the theory of the QH effect. 

The invariants of a (proper) CQHL (F, Q) capture &tr&sic properties 
of (F, Q), i.e., properties that do not depend on the explicit choice of a 
basis in F and on the "reshuffling" of electric charge assignments in the lat- 
tice corresponding to a transformation of Q by an orthogonal symmetry of 
F. Choosing a basis, {e t ..... eg} in F, we specify the CQHL by the 
(integral) Gram matrix Ko.= ( ei, ej), i, j =  1 ..... N, and by the row vector 
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Q= (QI ..... QN)  which specifies the components of the charge vector Q in 
the associated dual basis {~' ..... e N} of F*, i.e., Q=Y'.~"=, QjeJ; see Eqs. 
(2.2)-(2.4). Choosing a different basis in F, we have the resulting pair 
(K', Q') related to the pair (K, Q) by 

K' = SrKS and Q' = QS (3.1) 

where S is an element in GL(N, Z), the group of integral, nondegenerate 
N x N-matrices. Note that for S -  ~ to be an element of the group, the deter- 
minant of any element S has to be + I. 

Following the proposal in ref. 6 a concise presentation of the numeri- 
cal invariants of a CQHL (F, Q) is given by the associated symbol 

fill nl-I/' I N', = ~ / , ~  Elmi., I ..... ] (3.2) 

where the invariants summarized in the symbol have the following mathe- 
matical definitions and physical interpretations: 

1. N := dim F =  rank F; the lattice dimension N gives (in the scaling 
limit) the number of separately conserved u(1)-current densities in the 
corresponding QH fluid. Although no rigorous results are known, we 
expect N to depend on the filling factor and on the density or strength of 
impurities (disorder) in the system. We expect that the upper bound N .  on 
the dimension N of physically realizable CQHLs tends to oo as the density 
or strength of impurities tends to 0. ~7~ 

2. By (2.1) and (3.1) the Hall conductivity (or Hall fraction) aH is 
clearly a CQHL invariant: a H = < Q , Q > = Q . K - J Q  r. By (2.5) and the 
definition of Q it is a positive rational number. 

3. Writing a .  =n, /dH with gcd(nH, dH) = 1, we can write the impor- 
tant invariant of the lattice given by its discr#ninant zI as 

A :=det  K=MH (3.3) 

where the invariant l is called the level of the CQHL (F, Q); see (2.5). 

4. The level l satisfies an interesting factorization property, namely 
I=g2, where g is defined by g : = g c d ( Q  I ..... Q,V) with Qi := A< Q, e.J>, 
j =  1 ..... N and {el ..... ~,v} any dual basis o f F * .  Thus, by (3.3), the discrimi- 
nant is given by A = g2dH. The invariant 2 is called the charge parameter 
and its physical relevance derives from the following fact: one can prove ~6~ 
that, in our units where e = -  1, the smallest possible (fractional) electric 
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charge of a quasi-particle excited above the ground state in the correspond- 
hag QH fluid is given by 

1 
e* := min I(Q, n)[ = (3.4) 

n ~ / ' * , ( Q , n )  GO 2dH 

5. Finally we provide definitions of the relative-angular-momentum 
invariants lmi n and /max" Since Q is a primitive vector in F* [see (2.6)], 
there is a basis o fF ,  {q~ ..... qu}, such that (Q,  q;) = 1, i=  1 ..... N. The set 
of all such "symmetric" bases is denoted by ~Q.  Then, for any CQHL 
(F, Q) we define the invariants 

L , , i ,  , := min (q, q) (3.5) 
qe F . ( , Q , q )  = I 

and 

L . . . .  := min ( max (qi, qt)) (3.6) 
{ql, . . . ,qN} Ea.qlJQ I ~ i<<.N 

In the situation where (F, Q) is a primitive decomposable CQHL with 
decomposition (F, Q ) =  G~= ~(Fi, Qj) [see (2.8)] it is natural to refine the 
definitions (3.5) and (3.6) as follows: 

lmin(/-' , Q) := min L,,,i,,(1-'j, Q,.)/> Lmin(_F, Q) 
I ~ j ~ k  

(3.7) 

and 

lm,x(F, Q ) : =  max Lmax(ffj, Qj)>IL . . . .  (/-'~ Q) 
I < . j < . k  

(3.8) 

We note that, by the oddness of Q [see (2.7)], the relative-angular- 
momentum invariants (3.5)-(3.8) are positive, odd integers which satisfy 

Lmi.~L . . . .  /min~ < l  ..... (3.9) 

Exploiting the Chern-Simons description of QH fluids, it has been 
argued in refs. 6 and 7 that, physically, for an elementary chiral QH fluid 
corresponding to the indecomposable CQHL (F, Q), l.li. =Lmin indicates 
the smallest possible relative angular momentum of two electrons excited 
above the ground state of the fluid. The physical relevance of the quantity 
l . . . .  as well as its role in the classification of CQHLs will be expounded in 
great detail in Sections 4-6. 

If the values of the quantities lmi n and l .... are clear from context, they 
will be droped from the symbol (3.2). 
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Note that the elementary invariants in points 1-4 are clearly well 
defined also for (general) QH lattices. C61 

I:xamples.  We illustrate the above invariants by considering some 
examples. 

(a) The integer QH fluids discussed at the end of Section 2 (nonin- 
teracting electron systems) are characterized by the symbols 

(n")g[l,,i,~,Im~,,]=N(N)tt[1,1 ], N = l ,  2 .... (3.10) 
N \  d i l l 2  

Note that, by the decomposability of the corresponding CQHLs, we can 
write N(N) J~ = t(1)t t @ ... G ~(1)~ in accordance with the physical picture 
of N independent, filled Landau levels. 

(b) The Laughlin fluids, also discussed at the end of Section 2, 
correspond to CQHLs for which the associated symbols read 

BH [/rain, /max] = [2p+ 1, 2p+ 1], p = l , 2  .... (3.11) 
NK dH/;~  I I 

For a discussion of the special status of the Laughlin fluids from a 
classification point of view, see Theorems 4.4 and 4.8 in Section 4. 

(c) For each p = l , 2  ..... there is the series of Hall fractions 
a H =N/(2pN+ 1) with N =  1, 2 ..... From the data presented in Fig. 1, it is 
clear that many of the experimentally most prominent Hall fractions 
belong to these series (or to the charge-conjugated partner series of the one 
with p = 1; see the discussion in Section 7). We note that these fractions 
also figure prominently in Jain's work~3~--the basis of the Jain-Goldman 
hierarchy scheme~3~ we refer to Theorem 4.8 in Section 4, where, 
from a classification point of view, the uniqueness of the associated CQHLs 
is discussed. The above series of Hall fractions can be obtained by the 
following series of indecomposable CQHLs: the data pairs (K, Q) which 
determine these CQHLs are given, in some bases that we call "no~a l , "  by 

2 p + l  

- 1  

K =  0 

0 

--1 0 0 

2 - 1  0 

- 2 - 1  

0 - 1  0 

- 1  

2 

N, O = ( l ~ )  
N 

(3.12) 
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and the associated symbols read 

llH ["/min, "/ ..... ] N I = [ 2 p +  1, 2p+  1], p = l , 2  .... 
N',dH/~. N ~ I I 

(3.13) 

Note that the ( N -  1)-dimensional submatrix in the lower right of K is the 
Caftan matrix of the simple Lie algebra AN_]=su(N),N=2,3,...; see 
Appendix A. For N =  1, we recognize in (3.12) and (3.13) the expressions 
corresponding to the Laughlin fluids; see example (b). In connection with 
the QH effect the matrices in (3.12) first appeared in ref. 9. Combining 
results of refs. 9 and 3 (see Appendix E), we see that the CQHLs specified 
by (3.12) correspond to the "basic Jain states ''~3~ at crH=N/(2pN+ 1). 
Moreover, it has been shown in ref. 3 that the QH fluids corresponding to 
(3.12) exhibit large symmetries, namely su(N)-current algebras at level 1; 
see also ref. 5. In Section 5 we show that the above CQHLs belong to an 
interesting class of CQHLs with "large" symmetries, the so-called "maxi- 
mally symmetric" CQHLs. The classification of "maximally symmetric" 
CQHLs will be the main objective of Section 5. 

We note that, by extending definitions (3.12) and (3.13) to p = 0 ,  the 
composite integer QH fluids of example (a) can be included as special cases 
of (c). 

4. GENERAL THEOREMS AND CLASSIFICATION RESULTS 
FOR CQHLS 

The purpose of this section is to review general facts and classification 
results for CQHLs in order to put the more specific classification results 
given in Sections 5 and 6 into a broader perspective. We summarize, in the 
form of eight theorems, results that have been presented in our previous 
work~. 3~. v~ where more details can be found. We indicate those proofs that 
have not been given previously. Moreover, we discuss phenomenological 
implications of our theorems. 

The first two theorems are based on CQHL &equalities that establish 
useful relations between some of the numerical invariants introduced in 
Section 3. 

T h e or e m 4.1. The set of (proper) CQHLs (F, Q) with dimensions 
N<~N, and relative-angular-momentum invariants 1 ...... ~<l,, where N ,  
and l ,  are two given integers, is JhTite. 

This theorem implies that the set of Hall fractions aH that can be 
realized by CQHLs which satisfy the above bounds on N and "/max is finite. 
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We remark, however, that the number of possible fractions is growing 
superexponentially fast in N ,  and l , ,  e.g., for N ,  = 2 and l ,  = 3, there are 
ten CQHLs, while for N ,  = 3 and l ,  = 5, one finds already more than 250 
CQHLs. Fortunately, in the physically relevant situation where one also 
has a natural upper bound a ,  on the Hall fractions to be considered, the 
number of CQHLs satisfying this bound and the ones in Theorem 4.1 is 
drastically reduced[ This fact is illustrated by the classification results in 
Sections 5 and 6. 

The basic tools in proving Theorem 4.1 are Hadamard's inequality for 
positive-definite quadratic forms (see, e.g., ref 39), which implies that 

2g d H A det K ~< N = = /max (4.1) 

and the fact that ~42~ 

2gnH <~ C(N) "-I (4.2) lnlax 

where C(N) is a constant depending on the lattice dimension N, e.g., for 
two-dimensional CQHLs, one finds that C(2 )=4 .  | 

Physically, N is the number of separately conserved u(1)-current 
densities in a QH fluid (in the scaling limit). A larger amount of disorder 
(an increased density or strength of impurities) in the system is expected to 
reduce the quantity N because of "channel-mixing" effects. Hence it is 
natural to impose an upper bound N,  depending on disorder on the dimen- 
sion N of physically relevant CQHLs. With respect to an upper bound on 
the relative-angular-momentum invariant l ...... we argue, physically, that if 
/ ..... were too large, then the density of electrons in the ground state of a 
(pure) system would be so small that it would be energetically more 
favorable for the electrons to form a Wigner crystal, thereby destroying the 
incompressibility of the system; see ref. 40 and, for a review of recent 
experiments, ref. 41. Given this remark the following basic CQ H L 
inequality is of interest. 

T h e o r e m  4.2. For  a CQHL (F, Q) the Hall fraction an and the 
relative-angular-momentum invariants Lm~~ lm~., and l ...... satisfy 

1/O'H ~ Lmin ~</rain ~ l ...... (4.3) 

This theorem is a direct consequence of the Cauchy-Schwarz 
inequality (in the real vector space V~  F), ( Q ,  q ) 2 4  (q,  q ) ( Q ,  Q ) ,  and 
the fact that, for any vector qeF, with q~t(q) = (Q ,  q)  r  we have 
(Q,  q)-' >~ 1. I 
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If we suppose that, physically, chiral QH fluids satisfy a universal 
bound l .... ~<l. then (4.3) tells us that CQHLs with aN < 1/l. are physi- 
cally irrelevant. Note that the data in Fig. 1 are consistent with a choice of 
l .  = 7. 

Given these observations on the quantities N and l ..... one is led to the 
following heuristic principle: 

Stability Principle. The smaller the values of the CQ H L 
invariants N and l ...... the more stable the corresponding chiral QH fluid. 

This heuristic stability principle will receive further support when com- 
paring our classification results of Sections 5 and 6 with the experimental 
data of Fig. 1; see Fig. 2 and the discussion in Section 7, where an even 
sharper version is proposed. 

T h e o r e m  4.3. Let (/', Q) be a C Q H L  with even Hall denominator 
d H. Then the charge parameter 2 has to be even, too. 

For a proof of this theorem, we first define the vector v : = / ] , d  H Q E _F*. 
Then, for all dual vectors n = Z N=~njeJ~ F* we find that 

N N 

(v, n)  = 2dH(Q, n)  = ~ (A(Q,  eJ)/g)nj= ~ (QJ/g) ni ~ z  
. i  = ~ . i  = I 

by using zJ = g2dH and the definition of g; see points 3 and 4 in Section 3. 
Thus v is actually an element of (F*)*  - F and hence, by the oddness of 
Q [see (2.7)], the congruence ( Q ,  v)  - (v,  v) (mod 2) holds. Now, by the 
definitions of a .  and v it follows that the 1.h.s. of the congruence equals 
2n H and the r.h.s, equals 22dHnH, i.e., 2nil --22dHnH (mod 2). Finally, since 
for d H even, n H is odd (see point 3 in Section 3), the latter congruence 
would be false if 2 were odd. | 

The phenomenologically interesting implication of Theorem 4.3 is that, 
in QH fluids with an even Hall denominator d H , one predicts the existence 
of quasiparticle excitations above the ground state with "fractional" 
fractional charges, i.e., since 2 = 2, 4 ..... 

e* = 1/(2dH) ~< 1/(2dH) (4.4) 

It would be interesting to test this model-independent prediction 
experimentally for even-denominator QH fluids at a H =  1/2 and 5/2 men- 
tioned in Section 1: we predict that e * 4  1/4 (in units where e =  - 1 ) !  

Theorem 4.4. At every Hall fraction aH = I/m, m odd, there is a 
unique indecomposable CQHL with the property that its level / =  2g = 1. 
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This CQHL is one-dimensional and corresponds to the Laughlin fluid at 
~H = l/m. Moreover, any CQHL with a l l =  l/m, m odd, and N~>2 has a 
charge parameter 2 i> 2. 

A proof of this theorem is given in ref. 6, Section 7.5. 
The CQHLs corresponding to the Laughlin fluids have been described 

explicitly in example (b) at the end of Section 2. We emphasize that, by an 
argument similar to the one in (4.4), the last statement in Theorem 4.4 has 
implications that are, in principle, observable! In Section 7, an example 
illustrating this point is discussed when analyzing possible phase transitions 
at aH = 1. 

An interesting subclass of CQHLs is formed by CQHLs with level 
l =  1, i.e., their lattice discriminant A equals the Hall denominator dH. 
Indecomposable CQHLs with level l--1,  and thus 2 - - g =  1, have been 
classified for dH 4 25 and N below relatively high "critical" dimensions 
N,.(aH), typically around 10.138 61 

This subclassification has been achieved by combining the recent 
lattice-classification results of Conway and Sloane (43) with a systematic 
investigation of the possible charge vectors Q in the duals of all the 
classified (odd, integral, Euclidean) lattices. For the latter search one 
makes use of the following fact: from the Cauchy-Schwarz inequality and 
the defining relation a H =  (Q,  Q )  one infers that for a CQHL (F, Q) the 
dual components Qj of the charge vector Q_y,/=~_ ^' Q~.i. are constrained by 

2~ Qi"~(YHI . . . . .  for all j = l  ..... N (4.5) 

Thus, restricting one's focus to CQHLs with /max~ I,  and aH ~<a, one 
finds that (4.5) implies that the search for all possible charge vectors Q in 
the dual of a given lat t ice/" is a finite problem. | 

In the next theorem we recall a few general properties of CQHLs with 
level l-- 1; for proofs see ref. 6. 

Theorem 4.5. Let (F ,Q)  be a (proper) CQHL with level 
l = 2 g =  1. Then: (i) dH is odd, and F*/F~7/a.;  (ii) in order to realize a 
Hall fraction aH with nH even (odd), N has to be even [odd, and N=nH 
(rood4)]; (iil) for quasiparticles labeled by n EF*  a charge-statistics 
relation holds: if qcl(n) =e/dH, then ~9(n) = (nH)--Ie2/dH (mod 2). 

In the last statement of this theorem, the number (nil)-~ is defined as 
follows: if nH is odd, then nil(nil) -~ -- 1 (mod 2dH), and if nil is even, then 
nu :=2(2nil) - I + d H ,  with 2nH(2nH) - I -  1 (moddH). A proof of this 
theorem can be found in ref. 6, Section 5. 
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Shif t  Maps and their  Implicat ions.  In the remaining part of 
this section we study "structurally similar" chiral QH fluids. At the level of 
CQHLs "structural" relationships are realized by particular maps called 
shift maps. From a classification point of view, shift maps allow us, under 
suitable conditions, to immediately carry over classification results for 
CQHLs with Hall fractions in a given interval to corresponding results for 
other intervals. Phenomenologically interesting implications of structural 
relationships are outlined at the end of this section and in Section 7. 

First we divide the interval (0, ~ )  of possible Hall fractions ~H into a 
sequence of suitable subintervals, "windows," Z +- defined by 

P 

S,: :={C~HI1/(2p+l)<<,a,_,<l/(2p) I, p----l,2 .... 
(4.6) 

Z p  :=(~HI1/(2p)<<,(TH<l/(2p--1) I, p = l , 2  .... 

The " + "  superscripts in the window symbols Z/+ are chosen because these 
subintervals contain the "first main series" of Hall fractions, 
(TH=N/(2pN+l),  N = l , 2  ..... Similarly, the " - "  superscripts for the 
"complementary" windows remind us that these windows contain the 
"second main series" of Hall fractions, a H = N / ( 2 p N - 1 ) ,  N = 2 ,  3 ..... 
Moreover, we denote by Z(~- the interval [1, c~) and by Zp the union of 
the two complementary subintervals Z'/+ and Z~., i.e., Zp :=Zt+ w Z , , ,  
p = l , 2  ..... 

Second, we define a class of CQHLs that will figure prominently in the 
sequel. 

D e f i n i t i o n .  A primitive CQHL (F, Q) (see point 7 in Section 2) 
with Hall fraction aH E Zz, is called L-minimal if l ...... takes the smallest 
possible value consistent with (4.3), namely l ...... = 2p + l, p = 1, 2 ..... 

By (3.7)-(3.9), L-minimal CQHLs satisfy Lmm=l,,m,=L ...... =l  ..... = 
2p + 1. General, powerful implications that follow fi'om L-minimality are 
summarized below in Theorems 4.6-4.8; for proofs, see ref. 7. 

Theorem 4.6. For  p - -  l, 2 ..... let (/-', Q) be a (proper) CQ H L with 
aH E Z r and L ...... = 2p + 1. Then (F, Q) is primitive and L-minimal, i.e., we 
also have Lmm=l ..... = 2 p + 1 .  Moreover, ( F , Q )  is indecomposable if 
a H <  2/3. 

We note that the bound ~H < 2/3 for indecomposability is sharp. As a 
matter of fact, at a l l = 2 / 3  there is an L-minimal (1 ..... = 3 )  composite 
CQHL. It is given by the direct sum of two Laughlin fluids at a H =  1/3; see 
example (b) in Section 2. 

Next, we give a precise definition of "shift maps." 
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D e f i n i t i o n .  Shift maps, denoted by ~,,  p = l , 2  ..... are maps 
between (proper) CQHLs  of equal dimensions, @: (F, Q)~--~(F', Q'). 
Starting from an arbitrary basis {e~ ..... eN} of (F, Q), the image (F' ,  Q') is 
uniquely specified by constructing a basis { e'~ ..... e'N} and a charge vector 
Q' that satisfy the conditions 

K'~i= (e'~, e';) = (e~, e/) + 2 p ( Q ,  e i ) ( Q ,  e/) 

= Ks~ + 2pq~l(e~) q~l(e/) (4.7) 

Q'i= (Q ' ,  e'~) = (Q ,  e~) = Qi for all i , j = l  ..... N 

Note that, although the conditions in (4.7) are formulated w.r.t, given 
bases, they specify the image (Y', Q')  uniquely, since different choices of 
bases and charge vectors in (4.7) simply lead to data pairs (K', Q') for 
(F' ,  Q') which are all related by the equivalence transformations ( f l ) .  

Denoting by No c F  the neutral sublattice of a C Q H L  (F, Q), i.e., 

F,, := { q E F  I (Q ,  q)  = q~.(q)=0} (4.8) 

it is straightforward to show that shift maps leave neutral sublattices 
invariant, 

F'o = Fo (4.9) 

As will be explained in more detail in Section 5, Eq. (4.9) implies that (in 
the scaling limit) the corresponding chiral QH fluids exhibit the same sym- 
metries. This equation is the mathematical basis for calling two chiral QH 
fluids structurally similar. 

What is the action of the shift map ,~p :=(F ,Q)w-~(F ' ,Q ' ) ,  for 
p = 1, 2 ..... on the space of invariants introduced in Section 3? 

(i) The discriminant A' of the (odd, integral, Euclidean) lattice F '  is 
given by 

A' = A( 1 + 2pall)  (4.10) 

(ii) The Hall conductivity changes according to 

1 1 
- - = - - + 2 p  (4.11) 
O'II_I O" H 

which corresponds to the "D-operation" in the Jain-Goldman hierarchy 
scheme; ~3~ see also refs. 31 and 3. Note that Eq. (4.11) implies that any 
CQHL which is the image under a shift map @, p = 1, 2 ..... necessarily has 
a Hall fraction strictly below 1/(2p). 
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(iii) The level 1, g, and the charge parameter 2 are all invariant under 
the action of a shift map ~ .  

We summarize (i)-(iii) by giving a succinct representation of the 
action of the shift map ~ at the level of the CQHL symbol, 

I1 H g "'It, I ~g aH =d-~H) ' ' a, H = nil__ p = 1, 2 . . . .  (4.12) 
N ~ ,V dH +2pnH/: '  

(iv) The name "shift map" for .~, is motivated by the fact that the 
relative-angular-momentum invariants L,I,~. and L ..... are simply shifted 
by 2p, 

L'm,,=Lm~.+2p, L'm~,~=Lm.,,x+2p (4.13) 

Unfortunately, for the physically relevant invariants lmin and l .... of generic 
primitive CQHLs there does not hi general hold a transformation rule 
similarly simple to (4.13)! Note, however, that for indecomposable CQHLs 
the identities lm~, = L,,i,, and l ..... = L ..... hold. 

From the definitions above one sees that the shift maps ~, are inver- 
tible on the set of (proper) CQHLs with Hall fractions a H <  l/(2p), 
p = l , 2  ..... - -F rom (4.7) it follows that ~7~=S:_ / , . - -The  preimages of 
these CQHLs are readily seen to be (proper) CQHLs. The set of (proper) 
CQHLs is closed under the action of the maps ~, and their inverses. 

However, the maps ~, and their inverses do not necessarily preserve 
the decomposability properties of CQHLs. (For example, composite 
CQHLs can be mapped into indecomposable ones, as illustrated in 
Theorem 4.8 below). Moreover, the maps ~, and their inverses do not in 
general preserve the primitivity property we have imposed on physically 
relevant composite CQHLs; see point 7 in Section 2. (For an example of 
a primitive CQHL with a preimage that is nonprimitive, see Section 4 in 
ref. 7.) From these remarks and the definitions (3.7) and (3.8) of the 
invariants I,,,~, and 1 ...... it is clear that the transformation properties of 
these invariants under shift maps are not as straightforward as the ones 
in (4.13). 

We recall that the main objective of the present work is the classifica- 
tion of primitive CQHLs. Although this set is not closed under the action 
of shift maps and their inverses, it is remarkable that a subset of the 
primitive CQHLs, the class of L-minimal CQHLs [defined after (4.6)] is 
closed under the action of shift maps and their inverses. This is the key to 
powerful classification results that we state presently. 
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It is convenient to partition the class of L-minimal CQHLs into the 
following subsets: 

Yf~ := {(F, Q)IaH ~Z'~ ,  L-minimal, 

i.e., primitive and l,,~. = l ..... = 2p + 1 } (4.14) 

where p = (0), 1, 2 ..... in accordance with the definition of the windows L'~ 
given in (4.6). 

The next two theorems show that, on the one hand, the sets 
--~.p := Jf~,+ u :~;-  are structurally similar for different p's, while, on the 
other hand, there is an essential structural asymmetry between the sets )'t~ + 
and Jg~; for a given p. 

Theorem 4.7. The sets J~  of L-minimal CQHLs with an eZp for 
p =  2, 3 ..... are in one-to-one correspondence with the set Jf~. The corre- 
sponding bijections are realized by the shift maps @_ ,: Y~ ---, Jg~,. 

The proof of this theorem rests on Theorem 4.6, and it should be 
emphasized that chirality and L-minimality are crucial for the theorem to 
hold ~7~. Theorem 4.7 implies that, for the classification of L-minimal 
CQHLs, we can restrict our analysis to the lattices with Hall fractions aH 
in the "fundamental domain" Z,  = [ 1/3, 1 )! 

In ref. 7 the set Jt~ - of L-minimal CQHLs with a .  e [ 1, oD) has been 
constructed. Applying the shift map ~ to it, we obtain the set W (  of 
L-minimal CQHLs in the window Z + = [ l / 3 , 1 / 2 ) c Z , .  Hence, by 
Theorem 4.7, all the sets Jr p >/1, are known. In fact, we have the 
following result. 

Theorem 4.8. For each p = 0 ,  1, 2 ..... the set Yf~ of L-minimal 
CQHLs with aH ~ Z'z, + is uniquely given by the (infinite) series N = 1, 2,... of 
maximally symmetric CQHLs with SU(N)-symmetry of N-ality 1, meaning 
that the one-electron states described by these CQHLs transform under the 
fundamental representation of SU(N). For a given p the corresponding 
symbols read 

a H - - 2 p N +  1 [lm~n=l ..... = 2 p +  1], N = l , 2  . . . .  (4.15) 
N " I 

The maximally symmetric CQHLs of this theorem are N-dimensional 
and have been described explicitly in example (c) at the end of Section 3. 
In the notation of the next section [see (5.4)] the sets J?'~,+ are written as 

. ~ -  = {(2p + 11 'AN_ ,) I N =  1, 2,...} (4.16) 
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In Theorem 4.6 it has been stated that all CQHLs in (4.16) with p > 0 
are indecomposable. Furthermore, since their level l equals unity, Theorem 
4.5 states that a charge-statistics relation holds for the quasiparticle excita- 
tions of the corresponding QH fluids. 

We conclude this section by discussing Table I, which summarizes the 
Hall fractions aH (with dH ~< 21) in the windows Z" 7 that can or cannot be 
realized by elements in Jt 'Twith p = 0, 1, 2, and 3. 

A first inspection of Table I reveals an impressive agreement between 
the Hall fractions predicted by L-minimal CQHLs and the experimentally 
observed values in the windows * +  ~, , p =  1, 2, and 3. Note that CQHLs 
with higer dimensions and/or higher values of l ..... are associated with less 
stable QH fluids, which is in accordance with our stability principle 
advocated at the beginning of this section. In the windows Z' 7 ,  p = 1, 2, 
and 3, there is only one Hall fraction, 4/11, for which there are some 
experimental indications (however, only very weak ones!) that cannot be 
realized by an L-minimal CQHL. 

T a b l e  I. Ha l l  F r a c t i o n s  o He:E + ( p = 0 ,  1, 2,  3 )  T h a t  A r e  U n i q u e l y  R e a l i z a b l e  or  
T h a t  C a n n o t  Be  R e a l i z e d  by an L - m i n i m a l  C Q H L "  

Z'q + = [ 1, ,:c ) , / m h ,  = / . . . . .  = I: 

Realizable: ~ ~ ~ ~ ~ 

Not realizable: All proper fractions 

~ ~ ~ ~ .10 ... 

X~- = [ I /3, 1/2),/.,i,., = / ...... = 3: 

Realizable: ~ ] ~ ~ ~  ~ 7 ~ ]3 " ' ~  

Not realizable: ~',r " ~  ~ ~ ~ ~ ~'~ 

and all even-denominator fractions 

,~ .~ ~',' 

X~ = [ I/5, I/4}./.,,~. = / ..... = 5: 

Realizable: "~ ~ ~ ~7 

Not realizable: ~ and all even-denominator fractions 

Z "+ = [ I/7. I /6) . / . , i .  = I n , i , ,  = 7: 3 

Realizable: . t ~:~ I~ 

Not realizable: All even-denominator fractions 

"The symbols . ,  :, a n d .  specify the experimental status of the fractions as explained in Fig. I. 
Fractions with dH > 21 are omitted. 
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Concerning the results for the window Z~',  we make three remarks. 
First, it is satisfying to see that the "standard" integer QH fluids of the non 
interacting electron approximation [see example (a) at the end of Section 
2 ] are naturally included in our scheme and that they have a unique status. 
They correspond to the L-minimal CQHLs in the window Z~-. We note 
that, contrary to the other CQHLs appearing in Table I, these integer 
CQHLs are composite. 

Second, the result that in Z~ + no proper Hall fraction can be realized 
by an L-minimal (1 ..... = 1) leaves essentially only two ways open for 
realizing (in the scaling limit) a fractional QH fluid with aH > 1: ( i )  as  a 
composite system of independent, L-minimal electon- and/or hole-rich sub- 
fluids with partial Hall fractions a'H < 1; see (2.1) and (2.9); physically, e.g., 
the natural idea of adding fully filled Landau levels to a fractional fluid 
with a'H < 1 belongs to this situation; or (ii) as an indecomposable system 
described by a non-L-minimal CQHL (or a direct sum of such ones); see 
Section 6. 

Third, since the inverse shift maps 6a1,~ relate the CQHLs in the 
windows Z~',  p/> 1, to the ones in Zo + , the results in Table I are reminis- 
cent of Jain's construction ~3~1 where interacting electron systems with 
err ~Zp + are related to noninteracting electron systems at the integers 
N=CrH/(1 --2paR). 

Given the discussion above, two questions emerge. First, what can we 
say about the CQHL class ~t'~-, and thus, by Theorem 4.7, about all sets 
,YO, with p 7> 1? Second, given some experimental evidence for the Hall 
fraction 4/11, which cannot be realized by an L-minimal CQHL, we wish 
to get a fuller perspective on the assumption of L-minimality. Hence the 
question: how can we go beyond the classification of L-minimal CQHLs? 

It turns out that already the first question, not to mention the second 
one, addresses a truly formidable task of great complexity! Section 5 
provides a partial answer to the first question by classifying all "maximally 
symmetric," L-minimal CQHLs, which represent the most natural 
generalizations of the CQHLs appearing in Theorem 4.8. For low dimen- 
sions (N ~< 4), Section 6 gives the complete answer to the first question and 
makes the first manageable step in the direction of answering the second 
question. 

5. C L A S S I F I C A T I O N  OF  M A X I M A L L Y  S Y M M E T R I C  C Q H L S  

Maximally symmetric CQHLs correspond to the most natural 
generalizations of the "elementary" A- [or su(N)-] fluids that appeared in 
Theorem 4.8 of the last section and which have been shown to encompass 
the Laughlin fluids as well as the "basic" Jain fluids. Before we can give a 
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precise definition of the class of maximally symmetric CQHLs, we need to 
investigate a general geometrical feature of CQHLs, namely their "Witt 
sublattices." We use technical language, and then translate our definitions 
into explicit statements at the level of the data pairs (K, Q) associated with 
CQHLs; for the definition of these pairs, see the beginn~g of Section 3. 

Let (F, Q) be a CQHL. Then the Witt sublattice Fw c F is defined to 
be the sublattice of F generated by all vectors of length squared 1 and 2. 
The general theory of integral Euclidean lattices t43' 44~ tells us that Fw is of 
the form 

Fw = FA @ F,~ @ F,  @ 11 (5.1) 

where It denotes the (self-dual) unit Euclidean lattice in l dimensions, and 
F,j, F/~, and FI~ are direct sums of root lattices of the simple Lie algebras 
A .... i=su(m) ,D, , ,+2=so(2m+4),m=2,3 ..... a n d E  .... m = 6 , 7 , 8 ,  respec- 
tively. The subscripts in the symbols A,,, D,, and E,, indicate the ranks of 
these algebras. We note that all the root lattices of these Lie algebras are 
generated by vectors of only one length, namely of length squared 2. (In 
the mathematical literature, the A-, D-, and E-Lie algebras are called 
simply-laced.) 

Denoting by (9 the orthogonal complement of Fw in F, whose dimen- 
sion satisfies dim (9 = N-dim Fw >/I, we call the sublattice f'w (9 (9 the 
Kneser shape of F, and one has the following embeddings of lattices: 

Fw O(gc_Fc  F* c_F* @(9* (5.2) 

where the asterisk denotes the dual of a lattice, as explained in Section 2. 
It can be shown t6~ that, for indecomposable CQHLs (F, Q), Fw does 

not contain any 1/and FE.~ sublattices. In the following we will concentrate 
on indecomposable CQHLs, or, correspondingly, on "elementary" chiral 
QH fluids. 

Theorem 5.1. Let (F,Q) be an indecomposable CQHL with 
aH< 2. Then Q is orthogonal to Fw, i.e., Q ~ (9*, and Fw c- P0, where Fo 
is the neutral sublattice of (F, Q). Moreover, if Pw 4: ~ ,  all the inclusions 
in (5.2) are proper. 

For a proof of this theorem and more details on the constructions 
aboveIwhich constitute the basis of the complete classification program of 
(general) CQHLs--see ref. 6, Section 6. 

Theorem 5.1 has an interesting corollary concerning the symmetry 
properties of the chiral QH fluid corresponding to (F, Q). Note that to 
every point in F there corresponds a vertex operator of the algebra of edge 
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currents. Let f# denote the Lie algebra--a direct sum of simple algebras 
A,,, D,,, and E6. 7--whose root lattice is given by the Witt sublattice Fw of 
(F, Q). It is not hard to show ~3' 6~ that the algebra generated by the vertex 
operators corresponding to the Witt sublattice Fw of F and the neutral 
u(1)-currents is the enveloping algebra of the Kac-Moody current algebra 
.:1 p at level 1 (denoted f41 )- 

The (infinite dimensional) symmetry algebra :~ canonically contains 
the (finite-dimensional) Lie algebra ff that can be associated with global 
symmetry generators. Thus, the Lie group G corresponding to f# is the 
group o f  global symmetries of the QH fluid. This implies that, given m 
electrons--fermionic quasiparticles with charge 1 and labeled by, say, 
q~ ..... q,,, e / ' c  / ' * - - they  transform under particular unitary irreducible 
representations (irreps) of G. These unitary irreps are specified as follows. 
Let 

qi=qi .w+q's ,  with q ~ . w ~ F *  and q'iE60* (5.3) 

be the decomposition, according to (5.2), of the ith electron's label, 
i=  1 ..... m. Then we may write qs. w =coi+  rs, with rs E Fw a root vector, 
and with coie F *  an elementary weight, i.e., a smallest length representative 
of the cosets (or "congruence classes" in Lie group terminology) in the 
quotient F * / F w  (see, e.g., ref. 45). Furthermore, by the general representa- 
tion theory of Lie and Kac-Moody algebras (see, e.g., ref. 46) the elemen- 
tary weight co s determines uniquely a unitary irrep zr~, i of G according to 
which the one-electron state labeled by qi transforms, i =  1 ..... m. 

From the general results about lattices given in ref. 43 (see also ref. 6), 
it follows that all the elementary weights cos E F*v which can appear in (5.3) 
are such that the corresponding irreps of aj can be extended to unitary 
highest weight representations of :~ at level 1. For a discussion of the latter 
point, see, e.g., ref. 46, Section 3.4. We will call these elementary weights 
"'admissible" weights, and the ones that can occur for the simple algebras 
.4,,, D,,, and E6.7  are given explicitly in Appendix A. 

One c a n  s h o w  ~6~ that if dim~O=l and F o = F w ,  then all one- 
electron states transform under the same unitary irrep z~,~ of G i.e., 
q J. w - �9 "" = q,,,. w = co mod Fw. 

The preceding general remarks motivate the following definition of 
maximally symmetric CQHLs. 

Definition. A (proper) CQHL (F, Q) is called maximally sym- 
metric if it satisfies dim (9 = 1 and Fo = Fw, i.e., the neutral sublattice of 
(F, Q) and its Witt sublattice coincide. Furthermore, denoting by ~ the Lie 
algebra associated with the root lattice Fw, we require the one-electron 

,~22~ 86/3-4-26 
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states described by (F, Q) to transform under a unitary irrep of ff which 
can be extended to a unitary highest-weight representation of ~,. 

Maximally symmetric CQHLs (F, Q) are specified by the following 
data: 

(L] ~ w) (5.4) 

where L is an odd, positive integer, Fw = F~, �9 Ft~ ~ F E r s is the Witt sub- 
lattice of (F, Q), and to e F*v/Fw is an admissible weight labeling an irrep 
of the Lie algebra f# associated with Fw. The possible weights to are further 
restricted by the value of L, namely <to, co> < L  [see (5.6) below]. 

We note that if the Witt sublattice is a direct sum of simple root 
lattices, Fw = Fw, @ .-. @ Fw~, k >~ 2, then the associated Lie algebra ~ is 
semisimple with decomposition fq = fqt @ ' @ ffk, and correspondingly the 
admissible weight reads to=to~ + .. .  +tok where t o ~ F * / F w , ,  i= 1 ..... k. 
In order to get an indecomposable lattice, every projection to~ must repre- 
sent a nontrivial coset in F*v,/Fw. This can also be shown to be suf- 
ficientF 42~ In  the sequel, we always assume that admissible weights to fulfill 
this requirement. Hence, all the maximally symmetric CQHLs  given in this 
paper are indecomposable. 

Equivalently to (5.4), we can also specify maximally symmetric 
CQHLs (F, Q) by their corresponding data pair (K, Q), once a basis has 
been chosen in F; see the beginning of Section 3. R~lative to a suitable 
"normal" basis {q, e, ..... eu_ ,} of F, (F, Q) is specified by 

K =  U and Q = ( 1 , 0  ..... 0) (5.5) 
C(Fw) 

N 

where L =  <q, q> is the same odd integer as in (5.4), C(Fw) is the Gram 
matrix of the basis {e, ..... eN_ ,} of F w - - i n  the normal basis chosen here, 
it equals the Cartan matrix of the Lie algebra (r associated with F w - - a n d  
finally, ~ = (co I ..... co N_ ,) is the vector of the dual components of to which 
are given by coj = (to, eJ>, J = 1 ..... N -  1. According to the decomposition 
(5.2), the basis vector q can be written as q = a ~ l Q  + to. 

If Fw is a direct sum of simple root lattices then C(Fw)--  
C(Fw,) G -'- �9 C(Fw~) is a block-diagonal matrix, and ~ = (~l ..... ~ . ) .  An 
example of data pairs (5.4) and (5.5) has been given by (4.16) and (3.12), 
respectively. The explicit forms of the Cartan matrices for the simple 
algebras A,,, D,,, and E6,7 and of the dual vectors ~ for the admissible 
weights to are given in Appendix A. 
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We denote by A(Fw) the discriminant of the Witt sublattice F w of F, 
i.e., A(F w) :=de t  C(Fw)=[I '* /Fw[.  From (5.5), it immediately follows 
that for maximally symmetric CQHLs 

A -- det K--  A( / 'w)[L  - ~ .  C(/ 'w) - i ~ r ]  

= A ( F w ) [ L - ( c o ,  co)] ( > 0 )  (5.6) 

and 

aH= ( Q, Q)  = Q. K _ , Q T = A ( F w ) >  _1 (5.7) 
- - zJ L 

These two equations are basic for proving the following theorem. 

T h e o r e m  5.2. The symbol of a maximally symmetric CQ H L 
(F, Q) specified by (5.4) or, equivalently by (5.5) takes the form 

a .  - (5.8) 
I+ .... kl\v=,v L - ( ~ , c o )  ~,=h,~ 

where h,o is the order of the elementary weight co in F*v/Fw. Furthermore, 
for the relative-angular-momentum invariants / .... and Imp, the equalities 
/,,,i,, = 1 ...... = L hold. 

If Fw is a direct sum of simple root lattices, Fw = Fw, • ... @ Fw~, 
k >~ 2, and o = cot+ ... + to k, as above, then the following identities hold: 

rank Fw = ~ rank Fw, 
i = 1  

k 

i = 1  

k 

A(Fw) = d e t  C ( F w ) =  I-[ det C(Fw) 
i = l  

~tnd 

h,o = lcm(h,o, ..... h,o~) (5.9) 

where the least common multiple (lcm) of two integers a and b is defined by 
lcm(a, b ) : =  ab/gcd(a, b), and similarly for more than two integers. 

For the simple Lie algebras A .... ~=su(m), Dm+2=so(2m+4), 
m = 2 ,  3 ..... and E6,7, all the ranks and determinants of their Cartan 
matrices, as well as all the lengths squared and orders of their admissible 
weights are collected in Appendix A. 
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C l a s s i f i c a t i o n .  Exploiting the results of Theorem 5.2 and the iden- 
tities in (5.9), it is possible to list all maximally symmetric CQHLs which 
have a fixed value of L and whose Hall fractions (7 H [ > 1/L; see (5.7)] 
belong to a given interval. In Appendix B all maximally symmetric CQHLs 
with lm~n = 1 ...... = L =  3 and ~H < 1 are listed�9 They are organized in four 
infinite one-parameter, one infinite two-parameter, and six finite series of 
CQHLs. For a physically relevant subset of Hall fractions (dH <21 and 
odd) the resulting CQHLs are indicated in Fig. 2, and a detailed discussion 
is given presently. 

Before entering this discussion, however, we state the most powerful 
implication of these results�9 Recalling the discussion about the shift maps 
in the second part of Section 4, we obtain the following classification result: 

All L-minimal, maximally symmetric CQHLs are classified by com- 
bining the series (B1) - (Bl l )  given h7 Appendix B with Theorem 4.7 of 
Section 4. 

Here is a summary of the results given in Appendix B-- the  classification 
of L-minimal, maximally symmetric CQHLs with 1/l ..... = 1/3 <aH  < 1: 

In the window Z'~-=[1/3,  1/2) we find the infinite series (B1) of 
CQHLs with Hall fractions ~rH=N/(2N+I), N = l , 2  ..... converging 
toward 1/2. This "basic" A- (or su(N)-] series needs no further explanation 
since it coincides with the set .Y{?,+ of Theorem 4.8, which was discussed in 
detail at the end of the previous section. 

In the "complementary" window s  = [ 1/2, 1 ), the classification leads 
to new, physically interesting perspectives. 

First, in Table II we collect the symbols, as defined in (3�9 of all 
L-minimal, maximally symmetric CQHLs with Hall fractions aH in the 
subinterval [1/2, 2/3). There are infinitely many such lattices with Hall 
fractions accumulating at 2/3. 

T a b l e l l .  S y m b o l s  of  a l l L - M i n i m a l  ( Im~x=3) ,  M a x i m a l l y  S y m m e t r i c  C Q H L s  
w i t h  GHe[1/2, 2/3)  c Z ~  " 

In [ I/2. 3/5)/' 
_ _ A ~ ) ,  .~  ~), .~(4)-;,,,(~),4, 

In [3/5, 2/3) '  

..~',(~),, ,,(~h, . :(~ ] _. 
and .... (~,+2L with / / =9 ,  l0 .... 

I(I  I 
�9 ,,(~), 

.,(~)~ Ix , 7 , ,~, 

" Notation as ill Fig. I, with tile ~lddition that indicates a Hall fraction that has been observed 
in two-layer/component systems. 

t'See (B2), (B3), (4), and (B7) in  Appendix B. 
'See  (B3L (B4L and (B8) in Appendix B. 
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From the first row in Table II we conclude that in the subinterval 
[ 1/2, 3/5) no other fractions than 1/2, 6/11, 5/9, 4/7, and 10/17 are realized 
by L-minimal, maximally symmetric CQHLs! This result leads to the 
following significant observation: 

Taking also into account the classification of generic (not necessarily 
maximally symmetric), low-dimensional CQHLs given in the next section 
(see Table VII in Appendix C, where a three-dimensional, generic, L-mini- 
mal CQHL with aH =7/13 is given), we conclude that for single-layer/ 
component QH fluids with a H = N / ( 2 N - 1 ) ,  where N = 8 , 9  ..... the 
"charge-conjugation (or particle-hole symmetry)picture" provides the only 
"natural" theoretical description. This picture corresponds to the nonchiral 
decomposition Z '~-~a, j=  1-a 'H,  with a'H < 1/2; see refs. 29 and 30 and 
Appendix E. 

In general, for the "second main series" of Hall fractions a l l=  
N / ( 2 N - 1 ) ,  N = 2 ,  3 ..... the charge-conjugation picture amounts to a 
description in terms of the following charge-conjugated A- (or su(N)-] QH 
lattices. These QH lattices are composites of two CQHLs of opposite 
chirality, meaning that they describe QH fluids which consist of electron- 
and hole-rich subfluids; see (2.1). More specifically, writing aH= 1 --a'H, we 
have that the charge-conjugated A-QH lattices are composites of the 
standard CQHL for the integer QH effect at aH= 1 [see example (a) at the 
end of Section 2] and an L-minimal (/max = 3) CQHL corresponding to an 
elementary A-fluid with a ' ~ = N / ( 2 N + I ) < I / 2 .  Note that, given the 
uniqueness result (Theorem 4.8 of the previous section) for the elementary 
A- [or su(N)-] fluids in _r~-, the "charge-conjugated A-fluids" with 
a~j = 1 - N / ( 2 N  + 1)= (N + 1)/(2N + 1) acquire a correspondingly unique 
status among all the QH fluids in Z~- that are proposed by the charge-con- 
jugation picture. Furthermore, it is shown in point (a) of Appendix E that 
the charge-conjugated A-fluids at a H = N / ( 2 N - 1 )  coincide with the 
"'hierarchy fluids ''t-'9" 3o) at these fractions. 

Contrary to the situation for the higher denominator (dH > 15) frac- 
tions of the second main series, we emphasize that for the fractions 
a H = N / ( 2 N -  1) with N =  2, 3 ..... 7, Tables II, III, and VII show that there 
are strictly chiral alternatives to the charge-conjugated A-fluids (see also 
the discussion of the "E-series" ref. 6, Section 7.4). Correspondingly, it is 
one of our basic contentions in this paper that in Z~-, the charge-conjuga- 
tion picture sl~ould not be applied without further thought. For many frac- 
tions, there are chiral alternatives; see Fig. 2. Actually, as will be discussed 
in Section 7, the QH physics at many of the fractions a ,  ~Z'~- turns out 
to be very complex! 

It should be emphasized that nonchiral, composite QH fluids are 
expected to exhibit a clear experimental signal distinguishing them from 
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purely chiral fluids. In nonchiral fluids it should be possible to observe 
excitations of both chiralities at the edge of the samples, while this is in 
principle impossible in chiral fluids. Hence, the experiments reported in ref. 
47, which do not find edge excitations of both chiralities at a H --2/3 in the 
samples considered, are most interesting, and further experimentation in 
this direction would clearly help to deepen the understanding of the QH 
effect. 

Next we remark that discussions and tables analogous to those for the 
subinterval [1/2,2/3) can be repeated for all subintervals [ (n - l ) / n ,  
n/(n + 1 )) c Z~-, n -- 3, 4 ..... In each of these subintervals there is an infinite 
number of L-minimal, maximally symmetric CQHLs with Hall fractions 
accumulating at n/(n + 1 ). 

Rather than repeating the discussions, we summarize in Table III the 
most relevant results for the remaining interval [2/3,1). For this interval, 
we present all L-minimal, maximally symmetric CQHLs of low dimension, 
say, N <  7. This restriction is motivated by our heuristic stability principle 
("the smaller N and I . . . .  the more stable the corresponding QH fluid"). 

From Tables II and III and from our heuristic stability principle we 
are led to predict the existence of chiral QH fluids at Hall fractions 10/17, 
10/13, and 12/19. Taking the symmetry structures of the corresponding 
maximally symmetric CQHLs into account, the fraction 10/17 is clearly 
predicted to be the most likely, next candidate to be observed in single- 
layer systems. By (B4), the one-electron states of the corresponding QH 
fluid are transforming under the fundamental representations of 
SU(2)xSU(5). Note also that, in the charge-conjugation picture 10/17 
would be "conjugated" to 7/17, at which fraction there is, however, neither 
an L-minimal, maximally symmetric nor a generic, low-dimensional (see 
next section) CQHL. This conclusion is interesting, since there are some 
tentative experimental results suggesting the formation of a QH fluid at the 
fraction 10/17, ~m~ and there is no indication of a QH fluid at the "con- 
jugated" fraction O" H = 7/17. 

Furthermore, comparing the data of Table I to those of Tables II and 
III, one immediately notices a striking qualitative difference between the 
"complementary" windows _r+ and -ft,,  p = 1, 2 ..... By Theorem 4.8, we 
have that if a Hall fraction in the windows Z" 7 is realized by an L-minimal, 

Table l l l .  Symbols of all L - M i n i m a l  ( Imax=3) ,  Max imal ly  Symmetr ic  CQHLs 
w i t h  OH e [2/3,  1 ) c ~'~ and Low Dimensions N ~< 6" 

"Notation as in Tables I and II. See (5), (B6), (B6), and (BII) in Appendix B. 
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maximally symmetric CQHL, then it is unique. On the other hand, in the 
windows Zp  one often finds several structurally different lattices realizing 
a given fraction. The CQHLs having the same Hall fractions are typically 
embedded into one another. This will be explained in more detail in 
Section 7 when we discuss the possibility of "structural phase transitions" 
in QH fluids. 

The status of even-denominator Hall fractions will be discussed in 
Section 7 when the classification of generic, low-dimensional CQHLs that 
we present in the next section is available. 

In conclusion, we note that, except for the single fraction 4/11, all 
experimentally observed Hall fractions given in Fig. 1 can be realized by 
either an L-minimal, maximally symmetric CQHL or a charge-conjugated 
A-QH lattice. All these CQHLs are of reasonably low dimension N; as a 
matter of fact, we have N~< 9, except for 8/11, where the lowest dimen- 
sional L-minimal, maximally symmetric CQHL has N = 11. 

However, before jumping to conclusions about the role of maximal 
symmetry in the classification of physically relevant CQHLs, we need to 
find a way of going at least one step beyond the classification of maximally 
symmetric CQHLs and see how the resulting data compare with 
experimental results. Such a step will be carried out in the following section 
by addressing the classification problem of generic CQHLs in low dimen- 
sions (N~< 4). Just to mention two results: we shall find, e.g., at aH= 8/11 
a non-maximally symmetric CQHL in four dimensions which is L-minimal 
and exhibits an SU(2)-symmetry; see Table IX in Appendix C. Clearly, in 
describing the QH fluid forming at 8/11, this CQHL competes with the 
11--dimensional, maximally symmetric one mentioned above. Furthermore, 
the "simplest" non-L-minimal CQHL forms in dimension N = 2 just at the 
"missing" fraction aH= 4/1 1; see Table VI in Appendix C. It coincides with 
the proposal in the "hierarchy schemes"; ~29' 30) see Appendix E. 

6. C L A S S I F I C A T I O N  OF L O W - D I M E N S I O N A L  C Q H L S  

In this section we venture a step beyond the classification of maxi- 
mally symmetric CQHLs presented in the last section. We provide 
systematic classification results for low-dimensional CQHLs that are 
neither necessarily L-minimal nor necessarily maximally symmetric. This 
allows us to get a better understanding of the role played by these two 
properties in the classification of physically relevant CQHLs. In the second 
part of this section we use our results and the phenomenological data 
summarized in Fig. 1 to argue that the assumption of L-minimality for 
physically relevant CQHLs is experimentally corroborated. The maximally 
symmetric CQHLs turn out to be most relevant in the windows Z~-, where 
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they are unique in the sense of Theorem 4.8. In the "complementary" 
windows Z 7 they are typically competing with generic, low-dimensional, 
L-minimal CQHLs. The latter ones, however, often exhibit a form of 
"partial" symmetry, and are in most cases contained as QH sublattices (see 
Section 7) in maximally symmetric CQHLs of higher dimensions. 

Classification. We start by stating the precise classification results 
and then sketch their derivation. We have constructed the following sets of 
indecomposable, low-dimensional CQHLs, and correspondingly of possible 
"elementary" chiral QH fluids: 

(N1) All one-dimensional CQHLs (they correspond to the 
Laughlin fluids as described at the end of Section 2). 

(N2) All indecomposable CQHLs in dimension N- -2  (e.g., for 
3 ~< lm~, ~< 1 ..... ~< 7 there are 42 such lattices). 

(N3.1) All indecomposable CQHLs in dimension N = 3 ,  with 
/mi,, =/m,x = 3 ( 19 CQHLs). 

(N3.2) All indecomposable CQHLs in dimension N = 3 ,  with 
3 < ~ l . , i , , < ~ 1  . . . .  =5,  and aH~<3 (191 CQHLs). 

(N4) All indecomposable CQHLs in dimension N = 4 ,  with 
l,,in = 1 .... = 3, and a H ~< 1 (26 CQHLs). 

The explicit data characterizing the CQHLs of the sets (NI)-(N4) are 
summarized in Tables VII-X of Appendix C. 

We recall that, by definition, lmi,,  = Lm~, ,  and l .... = L ..... for indecom- 
posable CQHLs; see point 5 in Section 3. Moreover, given the sets 
(N1)-(N4), it is straightforward combinatorics to construct all primitive 
(see point 7 in Section 2) CQHLs with bounds on N and / ..... as above. We 
note that this construction has to be carried out in order to obtain the 
classification of all low-dimensional (N~<4), L-minimal CQHLs in the 
windows s with p ~> 2, by application of the shift maps ~ of Section 4. 

Next we turn to a brief sketch of the construction of the above sets of 
CQHLs. 

For each of the sets (N2)-(N3.2), the construction is carried out in 
three steps: (i) One classifies all indecomposable, integral, Euclidean 

N lattices F with discriminants A bounded by 1 ...... ; see (4.1). (ii) In the dual 
F* of each lattice one carries out an exhaustive search for odd, primitive 
vectors (Q-vectors). All Q-vectors which belong to the same orbit under 
the action of the corresponding lattice automorphism group are identified, 
since they give rise to equivalent CQHLs; see (3.1). (iii) One has to 
calculate, for each resulting CQHL (F, Q) the value of l ...... and retain only 
those CQHLs satisfying the respective bounds on l ..... . 
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We remark that since the first step presents a highly nontrivial 
unsolved mathematical problem when A and N are getting large, the 
program above is bound to work only in low dimensions. Actually, we 
have only been able to carry it out in two and three dimensions. Specifi- 
cally, the indecomposable, integral, Euclidean lattices with N = 2 have been 
classified by Gauss; see, e.g., ref. 44, especially Chapter 15. In three dimen- 
sions, the very detailed discussion of "reduced forms" for the corresponding 
lattices by Dickson, ~4sl (especially the tables in Chapter 11) make a com- 
puter implementation for classifying all such lattices with, say, A < 53 = 125 
straightforward. Further interesting mathematical considerations related to 
this fist step can be found in ref. 39. 

The second step is easily realized for two-dimensional lattices. Again in 
three dimensions the work in ref. 48 is most helpful, since it provides 
precise algorithms for determining the automorphism group of a given 
lattice. Given these algorithms and the bounds in (4.5), it is straightforward 
to find a computer implementation of a search routine for orbits of 
Q-vectors. 

The third step is tedious but computationally straightforward. The 
main work is to find all charge-1 vectors in F, which then have to be com- 
bined to form all possible symmetric bases needed in order to calculate 
l ..... ; see (3.6). 

For a better organization of the CQHLs in (N3.2), it is convenient to 
introduce another relative-angular-momentum invariant: Similarly to (3.6), 
we denote by oN o the set of all ordered, symmetric bases of F, 
[q,,q2, q3}, i.e., (Q,  q i ) = l ,  for i = 1 , 2 , 3 ,  and (q~ ,q , )~<(q2 ,  q2)~< 
{q3, q3)- Then one can show that for all lattices considered in (N3.2) the 
following invariant is welldefined: 

l~ := min (q2, q2) (6.1) 
{ q I" q2" q3 ~ E o'~.~'Q 

(q t ,  q f )  = ,%,it,, (q:~, q3) =t,,,,,~ 

and its possible values are 3 and 5. The set (N3.2) can be split into three 
subsets characterized by [lmi,, 12, l .... ] = [3, 3, 5], [3, 5, 5], and [5, 5, 5], 
respectively. The corresponding compilations of CQHLs are summarized in 
Table VIII of Appendix C. Clearly, the subset with invariants [ 5, 5, 5 ] con- 
tains all t h e  (indecomposable) images under the shift map ~ of the 
CQHLs listed in set (N3.1); the corresponding inverse images are indicated 
in Table VIII. 

In order to obtain the set (N4) we have applied the following 
procedure. Making use of the special form that the data pairs (K, Q) 
characterizing these CQHLs take in suitable symmetric bases [see (C.3)-~n 
Appendix C ], the positivity of K implies that all six coefficients, a ~, a 2 ..... c 
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necessarily have an absolute value which is strictly less than three. Based 
on this observation a simple computer routine can be used to generate the 
data pairs (K, Q) (relative to symmetric bases) of all CQHLs which belong 
to the set (N4~ Identifying all the data pairs which are related by a mere 
change of basis in an underlying C Q H L  [see (3.1)] and checking for 
indecomposability, one obtains the result summarized in Table IX. 
Actually, the indecomposability of lattices with discriminant .4 ~< 25 could 
be checked by comparison with the classification results given in ref. 43. 
The lattices with discriminants .4 exceeding 25 had to be considered case 
by case. 

This completes the description of our procedures tbr obtaining the sets 
(N1)-(N4).  Next we shall see what these results imply with respect to the 
role played by L-minimality and maximal symmetry in the classification of 
physically relevant CQHLs. 

L-Minimal i ty and Maximal Symmetry vs. Experiment. We 
first recall that an L-minimal CQHL with a H e Z l , = [ I / ( 2 p + l  ), 
1 / ( 2 p -  1)) is characterized by its primitivity (see point 7 in Section 2) and 
the equalities Lm~n = lm~n = L ..... = 1 .... = 2p + 1, p = 1, 2 ..... Given the 
explicit data in Appendices B and C, we can ask: Which Hall fractions all,  
e.g. in the window Z l are "strongly non-L-minimal?" Here, strongly non- 
L-minimal means that these fractions can be realized by a non-L-minimal 
(indecomposable or composite) C Q H L  with N~<3, but neither by a low- 
dimensional (N~< 4), L-minimal C Q H L  nor by a maximally symmetric one 
of arbitrary dimension. Besides this "strong" form of non-L-minimality we 
may also define a "weaker" form. Let us call a Hall fraction weakly non- 
L-minimal if it can be realized by a non-L-minimal CQ H L with N ~< 3 and 
if there is also a maximally symmetric, L-minimal realization, however, 
only in higher dimensions, say, with N>~ 10. Recall the phenomenological 
discussion at the end of the last section, where N -  10 has been argued to 
provide an approximate, heuristic upper bound on the dimension of maxi- 
mally symmetric CQHLs which are physically relevant. 

A compilation of strongly and weakly non-L-minimal Hall fractions is 
given in Table IV. The non-L-minimal (indecomposable or composite) 
CQHLs realizing these fractions are indicated by the values of their 
invariants lm~ . ,  12, and l . . . .  respectively, and the corresponding explicit 
data pairs (K, Q) can be found in Tables VI and VIII of Appendix C. In 
Table IV the d-~mensions in which maximally symmetric lattices exist for 
the weakly non-L-minimal fractions are indicated in brackets. All other 
notations are as in Table I. 

Upon closer inspection, Table IV is most revealing. The "simplest" 
strongly non-L-minimal situations are encountered at aH =4/11 and 8/15. 
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Table IV. Strongly and Weakly Non-L -Min ima l  Hall F rac t ionsa  H in the 
Window ]s = [1 /3 ,  1 )" 

i• 7 3 5 7 8 1  I I I  

[3,5] [3,5,5] [3,5,5] [3,5,5] [3,3,5] [ 3 ] ~ [ 5 ]  [5,5,5] 
[5,5,5] [5,5,5] [5,5,5] [5,5]~[5] 
1 3  I "~ 
,_-T-- R+ ? 

[3]~[5,5] 

9 13 I / I 

[3,5,5] [ 3 ] ~ [ 3 ] ~ [ 5 ]  [3,5,5] 
(N~> 17) (N~> 25) (N>~ 33) 

" Notation explained in the text. 

For both fractions there is a two-dimensional [ 3,5 ] -CQHL with invariants 
2 = g = 1. It is indecomposable in the first, and composite in the second 
case. As a matter of fact, we note that the latter situation provides one of 
the "simplest" examples of a composite chiral QH fluid, namely a composite 
of two basic Laughlin fluids. Clearly, at an = 8/15 the description in the 
charge-conjugation picture, 8/15 = 1 - 7 / 1 5  [where the 7/15 hole subfluid is 
described by the unique L-minimal CQHL (31 tA6) in dimension N =  7; see 
the discussion in Section 5 ] competes with the above non-L-minimal solu- 
tion. Applying the results of Appendix E, the above [3, 5] -CQHL at 
a H =  4/1 1 corresponds to the QH fluids predicted by the Haldane-Halperin 
(HH)c-~91 and Jain-Goldman (JG)130 ~ hierarchy schemes at "level" two and 
three respectively. 

Experimentally, there seems to be only very weak support for a QH 
fluid at an = 4/11 (see ref. 20 and ref.12 therein), and some first indications 
of the Hall effect at 8/15 have only been found recently in very high quality 
samples.~lT, 181 Apparently, the formation of QH fluids at these two frac- 
tions is a very delicate matter. 

More surprisingly, there is a persistent absence of experimental indica- 
tions of the QH effect at the non-L-minimal fractions 7/19, 5/13(!), 7/17(!), 
11/19, 13/21, 9/11(!), 13/15(!), and 17/19. The fractions marked with "(!)" 
are well separated from experimentally strong fractions nearby and thus a 
priori they are expected to be experimentally observable. This should be 
further confronted with the fact that none of the fractions in Z t which are 
realizable by L-minimal CQHLs with N ~< 3 is lacking experimental obser- 
vation! We note that, in the two hierarchy schemes, fluids at low(!) "levels" 
are predicted at all these fractions. In the HH picture, there are, at all frac- 
tions above, fluids at "level" 3, with the exception of 11/19 and 13/21, 
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where fluids form at "level" 5. In the JG scheme, the corresponding fluids 
are found at "level" 2, except for the last three fractions where they form 
at "level" 3, 4, and 5, respectively. From the point of view of QH lattices 
all "hierarchy fluids" predicted at the fractions above are non-Euclidean 
with the exception of those at 7/17 and 7/19; see Appendix E. In these two 
cases, they coincide with our non-L-minimal proposals with l,,,m = 3 and 
l ..... = 5, respectively, listed in Table IV. 

Recalling the heuristic stability principle of Section 4 (we have that the 
observations above lead to the following): 

Strong Stability Principle. The most stable chiral QH fluids are 
described by L-minimal CQHLs, and the smaller the lattice dimension N, 
the greater the stability of the corresponding fluid. 

This heuristic stability principle, with the prominence of L-minimal 
CQHLs implied by it, is rather pleasing in the light of Theorem 4.7, which 
states that all sets ~fr of L-minimal, primitive CQHLs in the windows Zp, 
p = 2, 3 ..... stand in one-to-one correspondence with ~ t  in Z~. 

Furthermore, given the stability principle above and the result of 
Theorem 4.8, it would appear to be justified to claim that there is now a 
firm understanding of the "structural organization" of QH fluids in the 
windows Z 7 , p = 0, 1, 2 ..... We note that, in particular, at the Hall fractions 
aH =N/(2pN+ 1), N =  1, 2 ..... which belong to the windows Z~-, the HH- 
hierarchy picture, c291 the JG picture,~3~ and our "L-minimal CQHL pic- 
ture" are equivalent. For details, see Appendix E. 

Combining the two preceding remarks, we conclude that the challeng- 
ing ground for deepening the understanding of the QH effect lies in the 
"complementary" windows Z T ,  p =  1, 2,..., and in particular in the 
"fundamental domain" Z p  = [ 1/2, 1 ). In this window, room is found for an 
interesting competition between three classes of L-minimal CQHLs: (i) the 
generic, low-dimensional (N~<4) CQHLs with no symmetry restrictions on 
their structure, (ii) the class of maximally symmetric CQHLs of fairly low 
dimensions (typically N~<9), and (iii) the (nonchiral) charge-conjugated 
A-QH lattices discussed in Section 5. This competition and its consequen- 
ces, such as the prediction of possible "structural phase transitions," 
appears to be missed in the hierarchy schemes. It is one of the main issues 
we address in our final section. 

7. S U M M A R Y  AND PHYSICAL IMPLICATIONS OF THE 
CLASSIFICATION RESULTS 

In this final section the key insights and conclusions of the previous 
sections are summarized and completed. In particular, the status of the two 
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main restrictions assumed in our classification, chirality and L-minimality, 
is discussed in detail. Several new experiments that could help to 
further deepen the understanding of the QH effect, in particular, of the 
"structural organization" of QH fluids, are proposed. 

S t a b i l i t y  P r inc ip les .  Based on the physical meaning of the CQHL 
invariants N [the number of channels in the corresponding QH fluid; see 
(A2) in Section 2] and l ...... [the smallest relative angular momentum of a 
pair of a certain type of electrons that are excited above the QH fluid's 
ground state; see (3.8)], we have motivated in Section 4 the heuristic 
stability principle that the smaller the invaricmts N and 1 . . . .  the more stable 
the corresponding QH fluid. 

For a sharpening of this stability principle, the introduction of the 
notion of L-minimality has proven to be effective. L-min#nality says that all 
the minimal relative angular momenta between any two identical types of 
electrons excited above a QH fluid's ground state are the same 
("homogeneity"), and that, furthermore, l ..... assumes the smallest possible 
value ("minimality") consistent with the value of the Hall fraction all; see 
below (4.6). A detailed confrontation of our classification results (sum- 
marized in Appendices B and C and discussed in Sections 5 and 6) with the 
experimental data summarized in Fig. 1. then leads to the following strong 
stability principle: The most stable chiral QH fluids are described by 
L-minimal CQHLs, and the smaller the lattice dimension N, the greater the 
corresponding fluid's stability. 

Furthermore, experimental data on single-layer systems suggest the 
respective values 10 and 7 as heuristic upper bounds for the invariants N and 
l ...... of physically relevant CQHLs (see also the discussion preceding 
Theorem 4.2). This observation is most powerful in combination with 
Theorem 4.1, which states that the set of CQHLs satisfying such bounds is 
finite. 

We continue this subsection with two compilations of Hall fractions 
where experimental indications of QH fluids would in the first case 
strengthen the conclusions above and in the second case, would pose new 
interesting questions about the physics underlying the QH effect. For a 
partial summary of the subsequent results, see Fig. 2 in Section 1. 

(a) New fi'actions at which QH fluids can be expected to 
Jorm. Given'the above stability principles, there are basically two ways to 
predict new Hall fractions at which one could expect the formation of QH 
fluids in single-layer systems from the data given in Appendices B and C. 

First we shall argue for new fractions in the window L'~ =[1/3, 1). 
There candidates are fractions that can be realized by "simple" maximally 
symmetric CQHLs, where "simple" means L-minimal, low-dimensional, 
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and the Witt sublattice [which encodes the symmetry properties of the 
fluid; see (5.1)] is either simple or semi-simple but with at most two sum- 
mands. The most obvious such candidates are the three fractions 10/13, 
10/17, and 12/19 of Table II, and the next "member" in the basic A- [or 
su(N)-] series [see (B1)], namely 10/21. The first three fractions are 
realized by CQHLs in six dimensions, the latter by one in ten dimensions. 
All four lattices are indecomposable and have level l = 2g = 1 which means 
that, by Theorem 4.5, a charge-statistics relation holds for them. In addi- 
tion to these fractions further candidates in the window s can be inferred 
from Table IX containing all indecomposable, L-minimal CQHLs in four 
dimensions. Here two fluids with a partial SU(2) and one with a partial 
SU(2)xSU(2)-symmetry are predicted to form at crH=6/7, 13/17, and 
14/19, respectively. Moreover, a generic fluid exhibiting no continuous 
symmetries might form at a H =  11/13. 

Second, in the windows Z / , - - [1 / (2p+  1), 1 / ( 2 p -  1)), p =2,  3 ..... new 
QH fluids are predicted by acting with the shift maps 6ep_ i on the CQHLs 
corresponding to well-established fluids with aH eZ~; see Section 4, in 
particular transformation property (4.12). The most immediate fluids 
whose shift map images might be considered are the ones belonging to the 
A-series with Hall fractions aH-~N/(2N+ 1). This leads to predictions of 
QH fluids at, e.g., 2/13, 4/17, and 5/21. We note that, from a QH lattice 
point of view, our results at the fractions aH=N/(2N+I)  and at their 
shifted images coincide with the proposals given in both the Haldane- 
Halperin ~29~ and the Jain-Goldman t3~ hierarchy schemes; see Appendix E. 
However, at most of the other fractions the pictures can differ significantly, 
as we explain in detail in the remaining part of this section. 

(b) "Missing" Hall fractions. Our considerations here are not only 
based on the two sets of classification results summarized in Appendices B 
(L-minimal, maximally symmetric CQHLs) and C [all indecomposable 
CQHLs with N~<3 (4) and l . . . .  4 5  (3)], but also on the investigation of 
the composite CQHLs that can be built from the ones listed there, 
provided their invariants N and l ...... satisfy the respective bounds. For 
brevity we restrict attention to odd-denominator fractions in the window 
ZI. A general discussion of the status of even-denominator fractions will be 
given below. 

The strongest statement we can make about "missing" fractions in Z t 
is the following: The data mentioned above provide no CQHLs at the frac- 
tions 6/17, o 9/17, 8/19, 10/19, 13/19, 8/21, 11/21 ..... and hence, no chiral 
QH fluids are expected to form at these fractions. (When listing fractions 
in this section, the dots ... always indicate further fractions with d H > 21, 
and the experimental status of the fractions in single-layer systems is 
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indicated as in Fig. 1. In other words, finding an experimental signal at one 
of these fractions forces us either to go beyond our classification results or 
to reconsider some of our basic assumptions. For example the implications 
for the statics of the chirality assumption which follow from the experi- 
mental data at CrH=9/17 (and for that matter, would also result from 
signals at 10/19 and 11/21) are discussed in the next subsection. 

By reversing the line of arguments that lead to the strong stability 
principle in Section 6, we can make further nontrivial predictions of 
"missing" fractions. Namely, assuming (i) L-minimality to be a necessary 
property of stable QH fluids, and (ii) that our data is exhaustive (which 
means, in particular, that generic L-minimal CQHLs with N ~> 5 are physi- 
cally irrelevant), then no stable chiral QH fluid can form at the fractions 
�9 4/11, 5/13, o 8/15, 7/17, 7/19, 11/19, 13/21 ..... These fractions have been 
called strongly non-L-minimal in Section 6; see Table IV. We note that a 
detailed analysis of the implications resulting from the experimental indica- 
tions at 4/11 and 8/15 can also be found there. (The fraction 8/15 finds a 
natural explanation in the charge-conjugation picture, as discussed 
presently, and the weak experimental data at 4/11 might indeed indicate 
the only QH fluid corresponding to a non-L-minimal CQHL, which, in this 
case, would be two-dimensional.) Assuming, in addition, a heuristic upper 
bound on the dimension N of CQHLs that can be realized physically, say 
N~< 10, as mentioned above, then further "missing" fractions are predicted 
to be 9/11(17), 13/15(25), 17/19(33), as well as 11/17(23), 14/17(20), 
16/17(18), 15/19(15), 16/19(19), 18/19(20), 16/21(19), 17/21(17), 
19/21(37) ..... The first three fractions in this list have been called weakly 
non-L-minimal and appeared in Table IV. All fractions are listed together 
with the dimension in which the lowest dimensional maximally symmetric, 
L-minimal CQHL can be found realizing that Hall fraction. 

Given these predictions, it would certainly be most interesting to carry 
out further experimental investigations in the regions around the indicated 
"missing" Hall fractions. The status of some of these fractions in the 
hierarchy schemes has been discussed toward the end of Section 6. 

Composite CQHLs and Charge Conjugation. W h a t  can we 

infer from experiment about the necessity to consider composite chiral QH 
lattices in the.description of single-layer QH fluids? The answer is, there 
are no experimental data in Fig. 1 conveying need for composite CQHLs, 
except possibly at aH = 2 N / ( 2 N +  1) where direct sums of two identical 
(indecomposable) CQHLs from the basic A-series should not be ruled out 
a priori; see the discussion below, in the subsection about "structural phase 
transitions." To substantiate this claim, let us list, e.g., all Hall fractions 
exhibited by low-dimensional (N~<4), L-minimal, composite CQHLs 
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in Z ~ = [ 1 / 2 , 1 ) :  . 2 / 3 = 1 / 3 + 1 / 3 ,  . 4 / 5 = 2 / 5 + 2 / 5 ,  5 / 6 = 1 / 3 + 1 / 2 ,  
9/10 = 1/2 + 2/5, 11/15 = 1/3 + 2/5, 14/15 = 1/3 + 3/5, 16/21 = 1/3 + 3/7 ..... 
We note that all such composite lattices necessarily have aH >~ 2/3. The 
claim can be further corroborated by also inspecting higher dimensional, as 
well as non-L-minimal, composite CQHLs. 

In multi-layer/component systems with nearly independent com- 
ponents, e.g., with a strong suppression of tunneling between the different 
layers, the picture will, of course, be different, and fractions listed above 
might possibly arise. 

The second question is whether the experimental data in Fig. 1 are 
suggestive of QH fluids that are composites of subfluids with opposite 
chiralities. For single-layer systems the commonly accepted charge- 
conjugation (or particle-hole symmetry) picture c 29.3o~ assumes this to be so. 
Actually, in this picture, the Hall physics at the fractions a,~ ~ Zp  = [ 1/2, 1 ) 
is assumed to be the "charge-conjugated" mirror image, a H =  1 --a'H, of the 
one at the corresponding fractions a'H ~(0, 1/2]. In particular, at two 
"conjugated fractions" (a H, a'H) the likelihoods of formation and the stability 
properties of the corresponding QH fluids are expected to be approximately 
the same. t3~ Although this picture is contained in our general framework 
presented in Section 2 [see (2.1) and Appendix El ,  we argue that it is not in 
general in accordance with the available experimental data. 

Let us see more precisely what the experimental evidence for or 
against the charge-conjugation picture is in single-layer systems. A first 
look at Fig. 1 shows that there are 11 pairs of conjugated fractions 
(O'H, O"H) where at both fractions QH fluids of similar stability have been 
established, and which thus are consistent with the charge-conjugation 
picture. These 11 pairs, however, have to be confronted with 10 (!) pairs 
of conjugated fractions (all, a~) where either only one member is observed 
or the stability status of the two members is markedly different. Taking a 
closer look at the experimental data, one realizes that 8 of the 11 pairs sup- 
porting charge conjugation are of the form (N/(2N+ 1 ), ( N +  1 )/(2N+ 1)), 
i.e., they relate fractions of the basic A-series with ones belonging to the 
"second main experimental series." 

As discussed at the end of Section 5, it is natural and in some cases 
necessary to take the charge-conjugation picture into account when dis- 
cussing the QH physics at the fractions of the second main series, 
a H = N / ( 2 N - 1 ) ,  N = 2 ,  3 ..... The particular nonchiral, composite QH lat- 
tices associated with these fractions in the charge-conjugation picture have 
been called charge-conjugated A-QH lattices. They have a unique status 
among all charge-conjugated QH lattices in Z ; ;  see Section 5. 

We note, however, that for the first six members (2/3 through 7/13) of 
the second main series there are also strictly chiral, L-minimal alternatives 
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a fact that is rather interesting, in the light of the results reported in ref. 47. 
In the experiments reported there, one has been looking for the signature 
of a charge-conjugation QH fluid at tr H = 2/3( = 1 - 1/3), namely, the exist- 
ence of edge excitations of both chiralities; see Section 2. But no evidence 
was found for this signature, a result that would be consistent with the 
proposal of a strictly chh'al fluid at that fraction. Further physically inter- 
esting implications of chiral QH lattices are discussed below, in the subsec- 
tion about "structural phase transitions." 

There is another important observation to be made: In the realm of 
CQHLs there are only non-L-minimal CQHLs at the fractions. 4/11, 5/13, 
and 7/17, while at the "conjugated" values o 7/11, �9 8/13, and �9 40/17 there 
are L-minimal (maximally symmetric) CQHLs of dimension 7, 9, and 6, 
respectively. Given the fact that the first three fractions are experimentally 
only very weakly indicated or unobserved, while the latter three are clearly 
observed or indicated, we favor the chiral explanations for the latter three 
fractions over the ones of the charge-conjugation picture. 

In conclusion, we are tempted to claim that for single-layer systems 
the experimental data do not support the charge-conjugation picture #1 
general. Since this claim may appear to remain doubtful, further 
experiments of the type reported in ref. 47, would be most welcome. 

S t a t u s  o f  Even -Denom ina to r  Hall  Fluids. First we emphasize 
that in the framework adopted in the present work, the description of QH 
fluids at fractions with even denominators dH is not an impossibility. This 
is satisfying since, experimentally, even-denominator QH fluids are well 
established at aH = 1/2 in two-layer~component systems, t2s' ,_6~ and there are 
celebrated data at a H =  5/2 observed in single-layer systems. ~2v" 28~ 

Second, theoretically, the most interesting fact about even-denominator 
CQHLs is that their charge parameters 2 are necessarily even; see Theorem 
4.3. Phenomenologically, this translates into the prediction that in such 
fluids quasiparticles may be excited above the ground state which have (fi'ac- 
tional) charges e * =  1/(2d H) ~< 1/(2dH)(!); see (3.4). The even-2 observation 
acquires further meaning when we note that all odd-denominator QH lat- 
tices which are consistent with the above strong stability principle and the 
respective phenomenological bounds on N and l,,,,,.~ are characterized by 
2 = 1. Thus, the charge parameter 2 appears to play a dichotomizing role 
between odd-and even-denominator QH fluids. 

Third, we must ask the crucial question: Which even-denominator 
fractions are predicted in our framework? To be more precise, taking over 
(i) the strong stability principle, (ii) the experimentally supported upper 
bounds on the invariants N and l . . . .  and (iii) the fact that, 
phenomenologically, there is little need for composite CQHLs, we ask: 

822,86~3-4-27 
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Which even-denominator Hall fractions in Z't can be realized by L-mini- 
mal, indecomposable CQHLs that are either maximally symmetric with 
N-N< 10, or generic with N~<4? The answer is surprisingly short! We give 
the resulting fractions and indicate in round and square brackets the 
dimensions of the corresponding maximally symmetric and generic 
CQHLs, respectively: 1/2 [2],  (3,4,...), 3/414], [4] Dsu(3), (5, 6,...), 
5/6(7, 8,...), 5/8[4] ~su(2), (9, 10,...), 7/8(9, 10,...). The generic lattices at 
1/2, 3/4, and 5/8 are given explicitly in Tables VI and IX in Appendix C, 
while all the maximally symmetric ones with Hall fractions ( 2 n -  1)/(2n) 
are structurally similar. Their Witt sublattices are given by 
I A 2t,, - i ~ IA i 1A i, l A 2t, - i ) 2A 3,..; see (B2) and (B5) in Appendix B and the 
discussion in the next subsection. Since for n = 2, 3 ..... the Witt sublattices 
of the lowest-dimensional realizations are semisimple with three sum- 
mands, we do not expect these lattices to present phenomenologically 
plausible proposals. This, in turn, leaves us, for the window S~, with the 
prediction of  even-denominator QHfluids at a H = 1/2, 3/4, and 5/8. 

We recall that, as mentioned in Section 1, there are convincing 
arguments ~41 that in a single-layer QH system there are no plateaus at 
a .  = 1/2, 1/4, 3/4, (and other even-denominator fractions). The ground 
state of a QH system at the corresponding filling factors is argued to be a 
gapless Fermi liquid. 

For double-layer (or wide-single-quantum-well) QH systems, however, 
the proposals made above are very natural. For example, at tr H = 1/2 we 
have a maximally symmetric CQHL with symbol [see (3.2)] and data [see 
(5.4)] given by 3(1/2)~_(31tA~JAI). This three-dimensional example has 
been discussed in Section 1. The two A t = su(2) summands forming its Witt 
sublattice Fw make it a natural candidate for describing a QH fluid with 
an SU(2)spi, and an SU(2)layer symmetry. Similar discussions can be 
repeated for the other even-denominator QH lattices mentioned above. 

Embeddings of CQHLs and Structural Phase Transitions. 
A rather remarkable consequence of our study of QH lattices is that, stay- 
ing in the context of chh'al and L-minimal QH lattices, as motivated above, 
the interval of Hall fractions 0 < or. ~< 1 can naturally be organized into 
"windows" in a twofold way. 

First, defining the windows 2 7 e = [ 1 / ( 2 p + l ) ,  1 / ( 2 p - I ) ) ,  p =  1,2 ..... 
the characterizing property of L-minimal CQHL with o- H e Z'p is that they 
saturate the bound 1/all ~<lma x given in Theorem 4.2, i.e., they have 
l .... = 2p + 1. We recall that, by Theorem 4.7, all the sets of L-minimal 
CQHLs with trH ~2?p are in one-to-one correspondence with one another. 
These correspondences are realized by the shift maps discussed in Section 4 
and lead to the result that, when discussing L-minimal CQHLs, we can 
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restrict attention to the "fundamental window" S~. We will make use of this 
fact in the remaining part of this subsection. 

Second, each window Zp can be divided into two subwindows 2:;  and 
Z i by the mid value of 1/(2p). The interesting fact behind this division is 
that the two resulting subwindows exhibit very different "structural 
organization." While in the windows Z ;  = [1 / (2p+ 1), 1/(2p)) there are 
unique L-minimal CQHLs at the fractions a H = N / ( 2 p N +  1), N = l ,  2 .... 
(see Theorem 4.8), one infers from the data in Appendices B and C that in 
the "complementary" windows Z p  = [ l/(2p), 1 / (2p-1  )) typically several 
inequivalent CQHLs can be found at a given Hall fraction all. An inte- 
resting question then is: What is the relationship between CQHLs which 
have the same Hall fraction? Furthermore, what does this relationship 
imply at the level of QH fluids? In order to answer these two questions, we 
introduce the concept of QH-lattice embeddings. 

Definition. A QH lattice (F', Q' ~F '*)  is embedded into another 
QH lattice (F, Q e F*) if (i) both QH lattices exhibit the same Hall frac- 
tion, i.e., a ~ = < Q ' ,  Q'> = < Q , Q ) = a l l ,  (ii) F '  is a sublattice of F, and 
(iii) the two charge vectors Q' and Q are compatible in the sense that all 
multi-electron/hole states described by (F', Q') remain physical states when 
viewed (via the lattice embedding F'  c F) as states described by (F, Q). In 
particular, all the electric charges stay the same, i.e., ( Q', q' ) = < Q, q' > for 
all q' ~ F '  c / ' .  

At the level of symbols [see (3.2)] we denote such embeddings by 

N' ,~ N , d H / , t  [lmin, /max] (7.1) 

Note that, as an immediate consequence of definition (3.7), l~i,/> lmin- 
Physically, a QH fluid described by the QH lattice (_F', Q') which is 

embedded into another lattice (/', Q) is characterized by a restricted set of 
possible multi-electron/hole excitations above the ground state, as com- 
pared to the corresponding set of the fluid associated with the lattice 
(F, Q). Furthermore, since the neutral sublattice [see (4.8)] of (F', Q') is 
a sublattiee of the neutral sublattice of (F, Q), the embedded fluid exhibits 
a (global) symmetry group G' [see (5.3)] which is a subgroup of G, the 
symmetry grot~p exhibited by the fluid associated with (/', Q). Thus, in this 
precise sense, the embedded f u i d  exhibits a more restricted symmetry than 
the one it embeds into. Put differently, going from a QH fluid to an embedded 
subfluid corresponds to a "reduction or breaking of symmetries." (As a 
mathematical aside, we remark that the study of embeddings of maximally 
symmetric CQHLs into one another is equivalent to the study of regular 
conformal embeddings of level 1 Kac-Moody algebras and the respective 
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branching rules. For recent results on the latter subject, see, e.g., the 
references in ref. 49.) Experimentally, symmetry breaking might be realized 
in phase transitions that are driven at a given Hall fraction by varying 
external control parameters. Hence, it is most interesting to see at which 
fractions in X~- such "structural" phase transitions can be expected within 
our framework. 

Motivated by the observations in the first two subsections above, we 
answer this question by taking into account the following physically rele- 
vant sets of CQHLs: (i) all generic, L-minimal CQHLs in low dimensions, 
N ~  4 (see Appendix C), (ii) all maximally symmetric, L-minimal CQHLs 
in dimensions N~< 10 (see Appendix B), and (iii) all composites of two 
identical lattices belonging to the basic A-series given in (B1) of Appendix 
B. The Hall fractions in X~- at which a CQHL embedding, or "chains" of 
CQHL embeddings, can be found are listed, together with the corre- 
sponding lattices, in Table X of Appendix D. The resulting fractions are 
B.,,.p-2/3, 8_p~ ~ -4/7, iB_p~~ 12~o6/7, ~ and the even- 
denominator fractions ~_~ �9 I/2 and ( 2 n -  1)/(2n), with n =2 ,  3, and 4. 

This result can actually be sharpened by taking the structure of the 
CQHLs involved into account (especially their symmetry groups). Given 
that at the fractions n/(n + 1 ) with n = 3, 4, 5, 6, and 7 already the lowest 
dimensional pairs of embedded CQHLs involve structurally complex Witt 
sublattices (with three summands and dimensions N >~ 5), we do not expect 
the proposals at these fractions to be phenomenologically very relevant. To 
summarize, in S, ( the Hall fractions at which structural phase transitions are 
likely to occur are predicted to be B.,,_p.2/3, B_ro3/5, ~ iB_p)'5/7, ~ and 
12)ol/2! Confronted with the experimental data, we find it most remarkable 
that precisely at the three fractions 2/3, 3/5, and 5/7 at which there are low- 
dimensional CQHL embeddings (N~<4), phase transitions have been 
observed or are experimentally plausible. Observations of phase transitions 
at cr H = 4/7 and 5/9 would, of course, further support the proposed picture 
of structural phase transitions. Thus, experiments are encouraged at these 
fractions! 

One question that remains is whether other types of  phase transitions 
can occur in the windows Xt + where we have the A-series of unique L-mini- 
mal CQHLs? The answer is yes! We briefly explain why. So far we have 
basically ignored the spin degrees of freedom in our discussion. However, 
a systematic incorporation of spin phenomena into our framework is 
straightforward and has been discussed in detail in ref. 5; see also ref. 6. 
Basically, such an extended framework for QH fluids with dynamical spin 
degrees of freedom incorporates (i) all the data forming a QH lattice 
(F, Q) and (ii) it additionally requires a polarization vector 6ieF*. The 
polarization vector iS specifies the spin polarization of the excitations in the 
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system (relative to some given direction) similarly to the way the charge 
vector Q specifies their electric charges; see (2.11). Given, e.g., a CQHL 
with a (neutral) A t =  su(2) sublattice, it has been shown in ref. 5, Section 6, 
that such a lattice can naturally be used to describe either a QH fluid with 
a spin-singlet ground state [from which SU(2)wi . degrees of freedom can 
be excited] or a QH fluid with a fully polarized ground state (from which 
only polarized quasi-particles can be excited), exhibiting, however, an 
internal SU(2) symmetry. Datawise, the two QH fluids are only distinct by 
the form of their associated polarization vectors! In ref. 5, Section 7, the 
simplest examples of such fluids have been discussed. They form at the frac- 
tions t~ H = 2/(4p + 1), p = 1, 2 ..... and are based on the maximally sym- 
metric, L-minimal CQHLs with data (2p+  1]~A~); see (5.4). Experimen- 
tally, the two QH fluids, one having a spin-singlet ground state and the 
other one a polarized ground state with an internal symmetry, can be dis- 
tinguished, in principle, by their magnetic susceptibilities and by their 
quantum Hall effects for the spin currents; see ref. 5, Section 7. In conclu- 
sion, at fractions in Z~ + we do not expect structural phase transitions; 
however, spin-induced phase transitions are clearly possible! More details on 
this will be given elsewhereJ 42~ 

Finally, we ask whether one should expect to observe phase transitions 
at aH = 1. The unique L-minimal (1 ..... = 1) CQHL is the one-dimensional 
Laughlin lattice with m = 1; see example (b) in Section 2. Thus, any other 
CQHL realizing this fraction necessarily has to be non-L-m#~imal 
(/ ..... >~ 3), a fact that suggests a markedly reduced stability for the corre- 
sponding fluids, as compared to the (L-minimal) Laughlin fluid! Moreover, 
by Theorem 4.4 we know that any other indecomposable CQHL at this 
fraction exhibits a charge parameter 2 strictly larger than 1. By an argu- 
ment similar to the one in (4.4), this leads to the prediction of fractional 
charges in these fluids! For the purpose of illustration, we give the lowest 
dimensional examples of such lattices from Tables VI and VII in 
Appendix C. Using the same notations as in Appendix D, one finds the 
lbllowing embeddings for these non-L-minimal CQHLs at aH = 1: 

2 ( 1 ) ~ [ 3 - ' 3 ] c - * {  3(1)26(2-1;0)~A'3(I)~(1_1;1) }c- -~s(1)~(3[ 'A, 'At 'A, tA,)  c_~... 

(7.2) 

We note that this chain of embeddings, with the corresponding possibilities 
of structural phase transitions, is particularly interesting in the light of the 
recent experimental data given in ref. 50. There evidence for a phase trans- 
ition between different QH fluids at aH = 1 has been reported. The phase 
transition seems to be driven by an in-plane magnetic field B I) and is 
observed in double-layer QH systems. Note that in (7.2), e.g., the first two 



880 Fr6hl ich e t  at. 

CQHLs [the lattice with symbol 2(1 )4 and the one with symbol 3(1 6 )2)] are 
both natural candidates for describing double-layer QH fluids. The first 
one can be interpreted as showing a discrete 7/2 layer symmetry, while the 
second one can be thought to exhibit a continuous A ~ = s u ( 2 )  layer 
symmetry; see also the discussion in Section 1. Furthermore, since for all 
lattices in (7.2) the charge parameter 2 equals 2, we would expect, as men- 
tioned above, that quasiparticles with fractional charge 1/2 can be excited 
above the ground state of the corresponding QH fluids. An experimental 
investigation of this prediction would seem to be revealing and is 
encouraged! 

A P P E N D I X A .  SIMPLE LIE ALGEBRAS 
The purpose of this appendix is to collect those facts about the simple 

Lie algebras A , , = s u ( n  -- 1), n = 1, 2 ..... D,, = s o ( 2 n ) ,  n =4,  5 ..... E 6 ,  and E 7 

which are basic for the classification of maximally symmetric CQHLs, as 
discussed in Section 5. For our explicit notations we adopt the conventions 
of ref. 45--they are followed, in particular, for the numbering of the simple 
roots of the algebras above, and we note that this numbering differs from 
the one chosen in ref. 46. Furthermore, for notational simplicity we often 
only write the symbol f# denoting a simple Lie algebra when we are 
actually referring to the associated root lattice F.~,~. 

As stated in the text, the ranks  of the Lie algebras A,,, D,,, and E,, and 
correspondingly of their associated root lattices are given by the index n in 
their symbols. 

Further data about these algebras, which we generally denoted by eft, 
are given as follows: First, we specify the Cartan matr ices  C(f#) which 
characterize the associated root lattices F.~ and we give the corresponding 
discriminants A(ff) = det C(ff). Second, we provide the admissible weights to 

in the dual lattices .r'* by stating explicitly their dual-component vectors ~, 
the so-called Dynkin labels. Moreover, the lengths squared, (to, to), and 
the orders, h .... of these weights in F * / F ~  are listed. 

�9 For A . . . .  t = s u ( m ) ,  m =2,  3, we have relative to a basis of simple 
roots {e, ..... e .... ,} /2 lO oo/t O1 2 --I 0 0 0 

C(A .... 1)= --1 2 - 1  0 0 0 

0 0 0 - 1  2 - 1  

0 0 0 - 1  2 

,,,-t (A.1) 

with det C( A . . . .  1) = m. 
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The admissible weights co,, t = 1 ..... m -  1, correspond to the unitary 
irreducible representations (irreps) of su(m) with "m-alities" t and dimen- 
sions m. (m - 1 ) . . .  (m - t + 1 )/( 1 �9 2-- .  t). They are given by the dual-com- 
ponent vectors ~,  = ((t~,,  e~ ),..., (co,, e .... ~)) which read explicitly 

~,  = (0~., O, 1, O,...LO), 

m -  I 

with 1 in the tth position (A.2) 

Moreover, their lengths squared and orders are given by 

t(m -- t) m 
(co,, ~ ' )  m and h,,, gcd(m, t) (A.3) 

We note that, from the point of view of characterizing CQHLs, the elemen- 
tary weights o ,  and ~ .... , are equivalent; see the equivalence relation (3.1). 

�9 For  D,,=so(2n), n =4,  5 ..... we have 

2 - 1  0 0 0 0 

- 1  2 - 1  0 0 0 0 

0 - 1  2 - 1  0 0 0 0 

C(D,,) -- 
0 0 0 0 --1 2 --1 --1 

0 0 0 0 --1 2 0 

0 0 0 0 --1 0 2 

with det C(D,,)= 4. 

n (A.4) 

There are three admissible weights, ~ , ,  ~,., and ~ ,  corresponding to 
the 2n-dimensional vector, the 2"-Ldimensional  spinor, and the conjugate 
spinor irrep of so(2n), respectively. The corresponding n-dimensional dual- 
component vectors read 

~ v = ( 1 , 0  ..... 0) 

~ , . = ( 0  ..... 0 ,1)  

~ = (0  ..... 0,  1, 0)  

(A.5) 

Furthermore, 

( t % ,  to~,) = 1 

H 
(o.,., o.,.) = ~  = (t~.~, t~.~) and 

and h,~,. = 2 

ifn is ~odd 
(even 

(A.6) 

(A.7) 
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For the labeling of CQHLs, to,. and to q are equivalent by (3.1). Moreover, 
for D4, all three admissible weights in (A.5) are equivalent [the so-called 
"triality" of so(8) ]. 

�9 For E6, we have 

2 i , 0  0 0 0i/ o12-,0 001 
- 1  2 - 1  0 (A.8) 

C(E6) = 0 -- 1 2 -- 1 

0 0 - - I  2 

0 --1 0 0 

with det C ( E 6 ) =  3. 
There are two admissible weights, to./. and to f ,  corresponding to the 

27-dimensional fundamental, and to its contragredient irrep of E6, 
respectively. The corresponding dual-component vectors read 

~r=(1,  0, 0, 0, 0, 0) 

~ ? = ( 0 ,  0, 0, 0, 1,0) 
(A.9) 

Furthermore, 

(to.r, toj) =4/3  = (to?, toj) and ho,j=ho, ~ = 3 (A.10) 

For the labeling of CQHLs, these two elementary weights are equivalent. 

�9 Finally, for E 7 we have 

2 - 1  0 0 0 0 0 \  

- 1  2 - 1  0 0 0 0 

0 - 1  2 --1 0 0 - I  

C(E7) = 0 0 -- 1 2 - I 0 0 

0 0 0 - 1  2 - 1  0 

0 0 0 0 - 1  2 0 

0 0 --1 0 0 0 2 

(A.11) 

with de tC(ET)=2 .  
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There is one admissible weight, tof, corresponding to the 56-dimen- 
sional fundamental irrep of E7, with 

~/ .=  (0, 0, 0, 0, 0, 1, 0) (A.12) 

and 

(to/., tot) = 3/2 and ho, ' = 2 (A.13) 

APPENDIXB.  MAXIMALLY SYMMETRIC CQHLS 

In this appendix all maximally symmetric CQHLs with l.,i. = l ..... = 
L = 3  and a l l <  1 are listed. The compilation has been obtained by 
systematically exploiting Theorem 5.2 in Section 5 and the identities (5.9). 
The data are organized in Table V in 11 series (B1)-(Bll) ,  and for each 
series the following format is chosen: 

First, the symbols of the CQHLs, N(nH/dH)]" are given; see (3.2). They 
are followed by the characterizing data of maximally symmetric CQHLs, 
(L] ~'Fw); see (5.4). Actually, since we are considering exclusively CQHLs 
with L = 3 in this appendix, the quantity L is omitted from the notation 
and only the data '~ is stated explicitly. If the Witt lattice is composite, 
Fw=Fw~ @ . - - ~ F w ~ ,  k>~2, and the elementary weight reads corre- 
spondingly o =to~ + ..- +tok, then we write ~'Fw = '~ --- "*Fwk. As in 
Appendix A, the root lattices Fw, are denoted by the symbols of the 
associated (simple) Lie algebras A,,, D,,, and E, ,  respectively. Furthermore, 
the notation for the elementary weights to,, to,,, to,., and tot which are all 
given explicitly in Appendix A is simplified by only writing the indexing 
letters t, v, s and f, respectively. Finally, we adopt the convention of writing 
a l b and a ~ b if a divides, respectively, does not divide b. 

Second, for each series explicit examples of Hall fractions which can be 
realized by a CQHL of that series are given together with indications of 
their experimental status, typically in single-layer systems. For the corre- 
sponding notations see Fig. 1 in Section 1 and Table II in Section 5. 

APPENDIX C. LOW-DIMENSIONAL,  INDECOMPOSABLE 
CQHLS 

The purpose of this appendix is to summarize the classification of all 
indecomposable CQHLs in two and three dimensions with relative- 
angular-momentum invariant 1 ..... ~< 5 and of all such lattices in four 
dimensions with / ...... = 3. We recall that, by definition [see (3.8)], we have 
l ..... = L ..... for indecomposable CQHLs. 

In Tables VI, VII, and IX, the CQHLs are organized according to 
increasing values of their Hall fractions aH and for each CQHL the symbol 
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Table  V. Al l  M a x i m a l l y  S y m m e t r i c  C Q H L s  w i t h  L = 3 and o H < 1 

//l'l / g 

~ ~. '~F w, parameters and examples 

(N), (BI) 'AN_ ~, N=l ,2 , . . . :  
~ , . ,  .~ .~ .~ .~, .~  o,~ o~ ~ ~ 

(B2) "D N ~- _, ^,_,, N=3,4, . . . :  
[Remark: "D~ -~ 'A, tA I , D 3 _ -A 3, and "D4 = ~D4] 

121 o /  

(B3) 

(B4) 

(B5) 

// JV \[~_7~A)g ZAN_ , , w i t h g = l ( 2 )  a n d 2 = l ( l  or 2) i f N i s o d d  

N \ ~ * ~ ' ~ / ~ .  ( even ,  a n d 4 ) / N o r 4 l N ) ; N = 5 , 6 , . . . :  

[ Remark: ' "f " -A 4 ~ E 4 ] 
4, .~ o~ .~ o~ .~ ,q 

( ,,,.:/gJ. 
. . . . . . .  _ ,\(n, n:, + n, + n z ) / g X J ~  " 

I I1 I g 

(B6) N 9 ,(N) x 

(B7) ( 4 ) ~ 
N ~ I 

(B8) . 

, \ 5 / ,  

.{2)' 
~\3J, 

IAn,_ t IA,.._ i , I11 = g r  I , r l 2 = g r  2 

with g = gcd(n,,  n2) and 2 = gcd(r r + r 2, g); 
N = n l + n z - l = 4 , 5  ..... and2~<nj~<n_,: 
, ,=2 :  .~  .~ '~ .~ ~ .-8 '" 

12 15 ~  21 I11 ~ 3: .~ 19 23 .'~ " " " 

'A ,_  I "Du_,, , with g = 2 ( 4 )  and 2 = 2 ( 1 )  i f N i s  
odd (even); N = 4 ,  5 ..... and 2~<n~< N - 2 :  

[Fo r  "D 2, 'D3, and "D4, see (82)] 
.~ ~ .~- ~ ,:,o~ ~ ... 

3Air-l ,  with g=gcd(N,  3); N = 6 ,  7, and 8: 

- ~ 3 ~  

�9 'Du_ , ,  with g = 2 ( l )  i f N  is odd (even); 
N = 6 , 7 ,  and8:  

[ Remark: ~D 5 ~- "gEs" ] 
�9 ~- .~, .~- 

f g  6 

f E  7 
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Table V. Continued 
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HIIIg 
~V ~ :. WFw, parameters and examples 

(2N-2"y tA 'A with g=2 (I) if N is odd (even); I N--2~ 
(B9) N\ N+7 J~ N=6, 7, and 8: 

10 6 14 
f2~ ~ --15 

(BIO) * (4-'~ 2 'A, "~Ds [Remark: r -" :Es"  ] 7\5/, 

(6) 
8 I 

:15), 
7\17J ~ IA22A . [Remark: ZA. ="SE4"'] 

:12), 
8\13Jl IAz"D5 

:20), 
8\21Jl IA3ZA4 

( 6 N -  18~ g 
(BII) N\5N--9J, IAllA21Au-4'withg=3'2'lf~ 30 

U(nH/dN)~ is given together with indications of the experimental status of 
the corresponding Hall fraction. For the latter indications, notations are as 
in Appendix B. The symbols are followed by the explicit data (K, Q) which 
characterize the CQHLs completely; see the beginning of Section-3. For a 
succinct presentation of the data (K, Q), we choose symmetric bases in the 
corresponding CQHLs [see (3.5)] and adopt the following notations: 

N_-2: E'm~n~ for K----~'7 ~  ~----,1,1, ,C,~ 
lmax 

N=3:  (alaz;b) for K =  al 3 , Q=(1 ,1 ,1 )  (C.2) 

a 2 b 

:3 a a2 a i ) 
N=4:  (ala2a3;blb2;c) for K =  al 3 bl a~ b~ 3 , Q=(1 ,1 ,1 ,1 )  

\a: b2 c (C.3) 
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Table VI. All Indecomposable CQHLs with N=2  and 3~<lmin~<lmax~<5 

[/mi. "/.,.x ] Remarks 

0 < e l l  < ~ None. by (4.3) 

z +, ~<~,, <,'- -:(~,)', [5~51 =(5 1 'A,)=.~'_.(,(~)I ~,(~)I) 

r , - .  �88 o-,, < ~ :(�88 [5:'5] =.~(:(  '~)9' 

.~:(~), [525] -~'1 ' , ' ~  ~' - -  ~, :~lt~,(g) ) 

z ? .  i, ~<,0-,, < -', .:(-',)~ [5'5] =,~(_,( l )~) 
4 I �9 : (~) ,  [325] = .c /~( t ( l ) l i~  ,(~)' ') 

�9 ,(~)', [ 3'-3 ] = (3  ] 'A ,) = .~',( ~11 )] (D ,{ I )t~) 

�9 :(~:7,, [3 '5]  

Z'I-, �89 < 1 ..,o:( �89 1"3'3] 

~:,-:(~_): [5 15] 

.... ...(~); [5--3] 

,..,,,-:(~)", [3 '5] 

Z',~. 1 ~<~u < c~ %(I )  4_, [ 3 - 1 3 ]  

�9 ,(I)~ [5-35] 
12  I , (~) ,  [ 3 - ' - 5 ]  

�9 _,(2)~ [ 3 - " 3 ]  = A  t 

�9 ,(2)'~ [5-~5] =Ai 

Fur thermore ,  in Tables VI- IX we indicate as remarks the corresponding 
Witt sublattices and/or  preimages under  the shift maps when they exist. We 
note that  in Tables VI and VII, the Witt  sublattices of the C Q H L s  with 
an  >~ 2 are not  fully included in their neutral  sublattices, i.e., some of  the 
associated symmetry generators have a non-vanishing electric charge. 

In Table VIII the symbols of  a physically relevant subset of  all three- 
dimensional,  indecomposable  C Q H L s  with l . . . .  = 5 are provided. They  are 
organized according to the values of their re la t ive-angular-momentum 
invariants [lmi,, 12, /max] ;  s e e  (6.1). The symbols are followed by triples 
(a~a2;b) which have the same meaning as in (C.2) above with the only 
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Table  VI I .  All I ndecomposab le  CQHLs  w i t h  N =  3 and Im i .=  Imax=3 

( Ih l~  ~' ( a ) a , :  b) 
,% d . / ~ .  

Remarks  

0 < a l l <  ~ None,  by (4.3) 

Z'?  } ~ < ~ ( , < ~  3 ,  , - , ,(~1, (2 2; 2) 

�9 ~" {2 Z~-,  �89 u < I ,:, ,{51., I; 2) 

7 ,  (2 �9 ,1~) I; l )  

.... �9 ,(}): (I I: I) 

..... ,,- ,(-])~ (20;  I) = A i  

..... �9 ,(~)', ( I  o: t )  

r +  i ~<crn < 2 o3( ] ){: (2 - I ; 0 )  DA i ~0  ~ 

�9 3(1)~ (I - - I ;  11 

23 , (g ) ,  (1 - I ; 0 )  

15 , (2 ,(T~)~ - - I ;  - - I )  ~A~ 

�9 ,(}y, ( l  - t ;  - ] )  

,('T), (0 - - I ;  - I )  

2~<o - ,<3  %(2)~ (2 --2; - I )  = A a A  i 

�9 L ' ) i  12 ~_ , )  (I - 2 ; 0 )  DA~ 

31 [ , (~ )  (I - 2 : - 1 )  ~A~ 

" ) '  ( 2 - v . - 2 )  ,,,(~-), _, ~ d ,  

3 ~<o'i(< ~-~, %(3)I  '~ ( - I  - I ;  - I )  

,(T)-' (0 - 2 :  - l )  ~ A )  

'~ ' - -2)  DA) A1 ,(~): { I - 2 ;  

=(3 I 'A2)=,~i( ,( i) l  | ,(l?, | ,( i ) ])  

= ( 3 l l A l l A ~ )  

DA I 

change that the diagonal elements of K are not 3 3 3, but are given, from 
left to right, by l , , i , , 1 2 1  . . . . . .  as specified at the beginning of each sublist. 
Moreover, in the sublist with invariants [ 5, 5, 5 ], all those inverse images 
under the shift map ~ are indicated which belong to Table VII with 
invariants [3, 3, 3]; see (4.12). Since the invariants N, g, and 2 do not 
change under the shift maps, they are suppressed in the labeling of the 
inverse images. Finally, only CQHLs with 2d H ~<22 are listed. For the 
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Table VI I I .  

Fr6hlich e t  al. 

Symbols  of Indecomposable  CQH Ls w i th  N = 3, 3 <~ I,,~. ~< I,~.~ = 5, 
and O'H < 1" 

[ / r a i n ,  / 2 ,  / m a x ]  = [3, 3, 5] :  

7 , 2) ,(,~):, (2 I ;2 )  dn), (22; 
5 a 4 �9 d~),( l  1;1)  ,(~), (10; 2) 

8 -, d~)~,(11; I) ,(~), (20; - 1 )  

(in total 17 CQHLs) 

[ / m i n , / 2 , / ~ , , ~ ]  = [3, 5, 5] :  

7 I 3 2 d~); - ,  ,(~), (32; 3) (2 > 3) 

,(~);(2 k3 )  ,(~)~, ( l  I ;3)  
7 5 3 12 d3), ; dT) , ( I  1;0) (1 - -1 )  

II .I 13 3 dT~),(2 1 ; - I )  ,(~3),(I - 1 ; I )  
,7 ~ 2) ... dT~), ( - I  - 1; 

(in total 34 CQHLs) 

[1.,~.. I_,. 1,.,,~] = [5, 5.5]: 

-, ,(~), (20; I) 
2 ,o 2) 9 , ,(~) (01; 1) ,(T~),(0 l: 

,(4)'i (0 2 : - i )  . . .  

5 ,(i3) (22;2) ,(~)~(22: I) 
9 , (9~( I  l; l )  ~(~), (I 1;2)  ' 

8 4 5 7 ,(T~) (20; - 1 )  ,(v), (1 I; - 2 )  

, ( ~ ) ~ ( - i  - I ; 3 )  ,(~)~(l - k  - i )  

3 I 

5 dw) ,=~ (~ )  ,(~);--- ~ 1 1 )  (~)'~_.=.~(1) d9,(2 '"  2; 2) 
,(4)~(22; I) 7 , 7 , ( ~ ) , = ~ ( s )  ,(~)7=.~(2) ,(~),-='" ~(2)  

7 ~ 2) 3 . ,  I t,, 3(T~),( 20 ;  ,(7)~ = ~ ( 3 )  ~(~)_,~ ' ~  ~(~), (31 ;  - -1)  

, ,~ (~)~ 7 ,, (2 ,(_~)2 (22; - I )  d{)',"(l I ; - 1 )  , ~9 , ( 3 - I ;  - I )  ,(~), - I ; - I )  
2 ,2 ~ ,o , ,(~) ( 4 - 9 ' - I )  d~); ( 3 0 : - 2 )  d-~) ; ' (2 : -2)  (T~)9 , ( i  I ; - 2 )  

,(~)~_.(I - I ;  - I )  ... 

(in total 48 CQHLs) 

" Dots  (...) indicate omitted fractions with  2d H > 22. 

physical interpretation of 2dH as the smallest possible (fractional) charge of 
quasiparticle excitations in the corresponding QH fluids see (3.4). 

A P P E N D I X  D. E M B E D D I N G S  OF L - M I N I M A L  C Q H L S  

In  th is  appendix, embeddings [see (7.1)] of L - m i n i m a l  C Q H L s  wi th  

Hall fractions in the window aN e Xi- ----[ 1/2, 1) are listed. More precisely, 
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Table IX. All Indecomposable CQHLs with N = 4 ,  Imi,=lmax=3, and ( r a < l  

(a~a,a~; b~b,.; c) Remarks 

0 < Orll <I 

Z:, '~<~,,<4 

z,, ~<m,<] 

-{~<a,,< 1 

None, by (4.3) 

�9 ,(~-)', (222; 22; 2) 

�9 ) _, ( 2 2 1 ; 9 - ) . 2 }  ,.,, ~(~ )., - - ,  

6 , {22 9 1 ; 2 )  , ,(~-), I; - 

0,(~)-', (22 I ;2 I; I) 

�9 ,(~)', (2 11; 11 ;2 )  

a.eoA~){ (2 1 1;2 I; 1) 

,,(~)2: (2 I I ; 1 1 ;  1) 

..... 0,(~)~ (210; 2 1; 2) 

...... 0.,(-~)~, {220;  21;  1) 

.... :,(~1~ ([ [ 1; I l ;  I )  

.... �9 ,(~}', (2 1 O; I 1; I) 

8 :L �9 ~(rr), (2 1 I; 11 ;0)  

ATe), ( 2 1 0 ; 2 0 ;  I) 

,(~-)-': (220; 20; I) 

,(~)~, (I  I 0;I I; I) 

13 : (2  4(v~), I O; I O; I) 

%(~)'i [1 I 0 ; 0 1 ;  1) 

2 6  1 ~(~T) ( 2 0 0 ; 1 0 ;  1) 
11 a ~(T3) (11 O; 1 O; I) 

,,,o~(6)~ ( 2 0 0 ;  I 1; I) 

I0  5 ~(w), (I 00; I O; I) 

=(3  )A3) 

= (3  2A3) 

= (3  IA I IA2) 

~ A  2 

~ A I A j  

P A l  A I 

=(3  I IAi IA I IAi) 

~A2  

p a t  

man 

~ A i  Al 

~A 2 

DA~ 

P A l  

in accordance with the results presented in Section 7, we take the following 
sets of CQHLs into account: (i) all generic, L-minimal CQHLs in low 
dimensions, N~< 4 (see Appendix C), (ii) all maximally symmetric, L-mini- 
mal CQHLs in dimensions N~< 10 (see Appendix B), and (iii) all com- 
posites of two identical lattices belonging to the prominent A-series given 
by (B1) in Appendix B. In Table X, CQHLs are specified by their symbols, 
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Table X. 

Frbhlich eta/ .  

All Embeddings of /_-Minimal CQHLs That Have ~ e ) ' ~  and Belong 
to the Classes Mentioned Above 

( - h ) I  

.~, 

a.e (l 

#. , . / , I  3 

.,(~):: [ 3 ' 3 ]  c-- , ,(~)-~ nAn =A, ' -  ) ~(�89 2A 3 c- ~(~)",~ "D4 ~ . . .  

, (~ )15- ' (~91 ;21 ; I )  D A ~ < - - -  _ ' ,(~),~'2A4 

~(~I; (21 l ; l  l : 2 ) = A ) A ,  '- ~ ,(-~):, 'A, 'A~ ~- ,,(II', 'D:  

,(~)~ ( I  I; I )  r- , ,(~)', 1 2 1 1 : 2  I: I ) = A ,  A ,  c- 

" } 2.d 5 <- , ,1~1, I A  ' IA2 r , ,.(~)z, "~ t 
"~)" )A ~ '-- ' ' (~) '  /E~, 

,(~): [ 3 ] @ , ( ~ ) :  [ 3 ]  '-- , , ( ~ ) ' , ( 2 0 ; 1 2 ) = A ,  c- , 

, .-- ~'"('~)s' ( 2 2 0 ;  2 I; I ) = A2"~ 2~ 
) 2 ' I I C'- . ( ..,(3), .4) A, 'A ,  J ' ~,( :0,- 'A,  ' A ,  <- , 

<= , ,.('~1, An "D.I ,(~), =AI "Ds c'- , ,~1~)~ IA i "O,-, . . -  

,,(-~)', ' A s  c- ~. ,(~):, 'De, c 

,(~): A:~ A s 

,(~), ( 10 ;  l )  ~- ' A ~ ) ~ , ( 2 I O ; I  I ; I ) ~ A i  

(~-" "~ 
~ ) _ . ( 2 2 0 ; 2 0 ; I ) ~ A 2  ('- 32 i A c- , (~- '  ' 

3 ~, . . ) ~13}'- IA ' )  I A I  I ~, ~ ) 2  I A ~ - A 3  " -  
.,(.~): (t  t O . l  t . ] ) J  - - 

, ~) I A ) @ : ( ~ ) '  'A)~> ,, , ZA <'- ) 
,(~) '  ([ 1 0 ; 0 1 ; l )  J 

~13)~ ) A 3 - A ~  r- , . . .  

' -  ( , ( ~ ) ~  ,~(, . ,o ,  ~- , ,(~)' 'D, 

,(~,)~ 'A~ 'A, 'A, ~ : ,(~,)] 'A~'-A~ . . . . . .  

,(~1, 1 2 0 0 ;  I I; I ) ~ A  o c- ) "(}1'~ iAa IA2 UA2 r'- , 

/31) I A t'~ ~3~I Im2 J 

~)t ~A))Ec, 

~(~), ~A~ ~A~ ~ .,(~), )A~-A~  ~ . . .  

,,(~)~ )A,. 'A,  'A,  ~- , ,,,(~):: ' .~_- 'A: . . . . .  

' J~), lET 
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N(nH/dH)~, and the explicit data characterizing their structure. These data 
are given in the conventions chosen in Appendices B and C, respectively. 

In order to simplify notation in the subsequent table, we note that, at 
the fractions an = n/(n + 1 ), n = 1, 2 ..... there are infinite "chains" of embed- 
dings, 

(n+l) IA,,_ I IA I cA t ~ ,~ JA, , - i  2A 3 
I t + 2  J. t / + 3  

*A,,_ I VD4 ~ " ~ " "  ~ tA,,-I r ' D N - n  ~ "'" 
n + 4  ~. N 2 

(D.1) 

In Table X the respective next members of these chains of embeddings are 
understood when we write the dots . . . .  

APPENDIX E. H I E R A R C H Y Q H  LATTICES 

In this appendix we collect some basic facts about the description of 
the Haldane-Halperin ~291 and the Jain-Goldman ~3~ hierarchy fluids in 
terms of QH lattices (F, Q). First, we follow the ideas presented by Read. 19~ 

The Gram matrix K [ see (2.2)] which characterizes the integral lattice 
F associated with a hierarchy fluid with Hall conductivity an = n H / d H ,  
where dH is odd, can be read off from the "continued fraction expansion" 
of aH. Let 

nH 1 
(E.1) 

aH -- dn - 1 
m 

1 

a~ 1 
a2 

�9 . .  l 

a N - - I  

where m is an odd, positive integer, and at,..., aN_~ are even integers of 
either sign. Then the associated Gram matrix K is given by 

(i 10 0)t 1 al - -1  0 0 

(K,.. i )=  --1 a2 --1 0 0 U (E.2) 

0 --1 aN- i  

822/86/3-4-28 
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which we abbreviate by the symbol 

[m; a 1,..., aN_ i] (E.3) 

We note that the signs of the l's in (E.2) can be changed by suitable equiv- 
alence transformations (3.1). The choice of all the negative signs in (E.2) is 
our convention. Moreover, we remark that, from a QH lattice point of  view, 
the two hierarchy schemes of Haldane-Halperin (29) and Jain-Goldman ~3~ are 
equivalent; see (3.1) and also the examples below. For this reason, we 
simply talk about "hierarchy QH lattices." 

In the dual basis associated with (E.2), the integer-valued linear func- 
tional (or charge vector) Q is given by 

Q = ( ~ 0 )  (E.4) 
N 

See the beginning of Section 3. 
With the help of Kramer's rule (2.5), one easily verifies that 

T (E.5) 

From Eqs. (E.2) and (E.4) it is clear that the charge vector Q is 
primitive and odd, as defined in (2.6) and (2.7), respectively. 

We note that in general the integral lattice F specified by (E.2) is not 
Euclidean. In order for it to be Euclidean, the Gram matrix K in (E.2) has 
to be positive-definite. One can show that K is positive-definite if and only 
if all the coefficients ai, i = 1 ..... N - 1 ,  are positive. In this situation, the 
hierarchy QH lattice (F, Q) is a CQHL, as defined in Section 2. In par- 
ticular, it satisfies assumption (A5) there. 

In the remaining part of this appendix we comment on the status of 
assumption (A5) for the non-Euclidean hierarchy fluids. All (Euclidean and 
non-Euclidean) hierarchy QH lattices satisfy assumptions (A1)-(A4) of 
Section 2. 

We exemplify the situation of non-Euclidean hierarchy QH lattices by 
discussing in some detail the two physically important series of hierarchy 
fluids with aH = N / ( 2 N - 1 ) ,  and N / ( 4 N - 1 ) ,  N>~2. 

(a) crH=N/(2N-1):  By (E.2) and (E.3) the Gram matrices K of 
these hierarchy fluids are given by 

K = [ 1 ;  - 2  ..... --2] (E.6) 

N - - I  



A Classification of Quantum Hall Fluids 893 

and the charge vectors Q are given by (E.4). In order to make the lattice 
structures behind (E.6) more explicit, we apply equivalence transformations 
(3.1), with S given by 

S =  

1 --1 

--1 2 

0 0 

0 
- 1  0 

1 0 

0 - 1  
0 

0 
1 0 

o \ ,  

0 +__1// 

N (E.7) 

We find 

K ' = [ 1 1 0 ( - 1 ) - [ 3 ; 2  ..... 2]  

N - - 2  

and 

Q = I + ( - 1 , 0  ..... 0) (E.8) 

N - - I  

The interpretation of (E.8) is that, from a QH lattice point of view, the 
hierarchy fluids at aH=N/(2N-1)=I-(N-1)/[2(N-1)+I] are 
indeed the "charge conjugates" of the "elementary" (N--  1 ) / [ 2 ( N -  1 ) + 1 ] 
fluids exhibiting su(N-1)-current algebras at level 1; see example (c) at 
the end of Section 3. 

We note that from (E.8) it is clear that these non-Euclidean hierarchy 
QH lattices satisfy assumption (A5) of Section 2. 

(b) aH=N/(4N--1): By (E.2) and (E.3) 
these hierarchy fluids read 

the Gram matrices K of 

K = [ 3 ;  - 2  ..... - 2 ]  (E.9) 

N - - I  

and the charge vectors Q are given by (E.4). Again, in order to make the 
composite nature of the lattices described by (E.6) explicit, we apply equiv- 
alence transformations (3.1), with S given by 
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S =  

2 N - 1  - I  
2 N - 2  - 1 

- ( 2 N - 4 )  0 1 

2 N -  6 0 0 
--(2N-- 8) 0 

- 1  
0 1 

___2 0 0 

i 

T I /  

N (E.10) 

This results in 

K ' = [ 4 N - - I ] @ ( - 1 ) . ( [ 1 ] O . . .  O [ 1 ] )  
Y 
N I l  

Q = ( 2 N -  1 ) E ) ( - 1 ) 0 )  . . - 0 ) ( - 1 )  
- ~ J 

N - - I  

(E.11) 

At the level of Hall conductivities the decompositions (E.11) can be 
expressed as 

t7 x = N / ( 4 N -  1 ) - ( 2 N - -  1)2/(4N - 1 ) -  1 . . . . .  1 

with N -  1 summands of - 1. 

Hence, similarly to (a), the lattices F of this series are composed of 
positive- and negative-definite sublattices F,, and/'/,,  respectively. Contrary 
to (a), however, it follows from (E.11) that the restrictions of the charge 
vector Q to the positive- and negative-definite components of F, Q,, and 
Qh, respectively [see (2.8) and (2.9)], are not separately primitive. Rather, 
it is only the fidl integer-valued linear form Q = Q,,~)Qh e F * =  F,* O)FI* 
which is primitive; see (2.6). 

In physical terms this means that, similar to assumption (AS) in 
Section 2, the dynamics of the positively and of the negatively charged 
(quasi)particle-rich subfluids--corresponding to F,. and F h, respectively-- 
are independent in the scaling limit. Contrary to (A5), however, the physics 
of these two subfluids are not identical up to charge conjugation. [The pair 
(F,., Q,.) is not a CQHL, as defined in Section 2, since Qe is not primitive]. 
We note that the fundamental charge carriers of these QH fluids, electrons 
and holes, are described as composites of the "basic" positively and 
negatively charged (quasi)particles described by Fe and/'/ , ,  respectively. 

In conclusion, a slightly weaker assumption than (A5), accounting for 
the situation above, would be as follows: 
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(A5') The "basic" charge carriers of a QH fluid are positively and/or 
negatively charged (quasi)particles. We assume that in the scaling limit the 
dynamics of positive-(quasi)particle-rich subfluids of a QH fluid is inde- 
pendent of the dynamics of negative-(quasi)particle-rich subfluids. The 
physically fundamental charge carriers of a QH fluid, electrons and/or 
holes, are composites of positive and/or negative "basic" (quasi)particles, 
respectively, or electrons and/or holes are composites of both positive and 
negative "basic" (quasi)particles. 

Adopting assumption (A5') instead of (A5), the classification problem 
of QH fluids (see Section 2) would be generalized according to: In the 
scaling limit, the quantum mechanical description of an (incompressible) 
QH fluid is universal. It is coded into a pair of odd, integral, Euclidean 
lattices, F,. positive- and Fh negative-definite, respectively, and an odd, 
primitive vector Q e F* = F,* ~) FI*. 

For the reasons stated in Section 2 we do not study the resulting, 
slightly more general classification problem. We remark, however, that all 
hierarchy fluids which are of physical relevance in the region 0 <trH < 1 
have been checked to belong to this more general classification program if 
they are not already contained in the one treated in this paper. 
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